81 research outputs found

    Rose-Ringed Parakeets

    Get PDF
    Rose-ringed parakeets (Psittacula krameri; hereafter RRPA; Figure 1) are an invasive species in the United States, present in Alabama, Louisiana, Texas, and Virginia, and with established populations in California, Florida, and Hawaii. They are also the most successful species of invasive parakeet, worldwide. RRPA can cause significant damage to agriculture, including grains, oilseeds, fruits, and ornamental plants. Large flocks of RRPA roost near human infrastructure resulting in concerns about human health and safety (e.g., collisions with aircraft, disease transmission, feces accumulation, and noise complaints). The population growth and spread of RRPA is of conservation concern given the potential impact on native wildlife, spread of invasive plant seeds, and destruction of native plants. RRPA are an agricultural pest with a generalist diet and feeding behaviors that increase the severity of crop damage (Figure 2). RRPA damage corn by feeding on the anthers and pollen of the inflorescence, the tender cob stage, and the milky cob stage up until maturity. RRPA perch on sunflower heads and access the seeds that are hulled prior to consumption. Damage to tree fruits is greater on the top branches compared to the side and bottom branches. RRPA attack stored grains and eat unripe fruit, extending the damage period. RRPA often discard partially-eaten food. Crop damage varies with some fields experiencing more damage due to the timing of crop maturity or location (e.g., field or orchard edges have greater damage than interior). RRPA strip roosting trees (e.g., royal palms in Kauai) of their leaves. A long-term management plan that involves sustained lethal control is necessary to reduce invasive RRPA populations and their damage. In the meantime, the following damage management methods may provide short-term relief from RRPA damage

    Evaluation of roost culling as a management strategy for reducing invasive rose‑ringed parakeet (\u3ci\u3ePsittacula krameri\u3c/i\u3e) populations

    Get PDF
    Rose-ringed parakeets (Psittacula krameri) are one of the most widespread invasive avian species worldwide. This species was introduced to the island of Kaua‘i, Hawai‘i, USA, in the 1960s. The rapidly increasing population has caused substantial economic losses in the agricultural and tourism industries. We evaluated the efficacy of a roost culling program conducted by an independent contractor from March 2020 to March 2021. We estimated island-wide minimum abundance was 10,512 parakeets in January 2020 and 7,372 in April 2021. Over 30 nights of culling at four roost sites, approximately 6,030 parakeets were removed via air rifles with 4,415 (73%) confirmed via carcasses retrieval. An estimated average of 45 parakeets were removed per hour of shooter effort. The proportion of adult females removed in 2020 was 1.9 × greater when culled outside of the estimated nesting season. Of the four roosts where culling occurred, the parakeets fully abandoned three and partially abandoned one site. Of the three fully abandoned roosts, an estimated average of 29.6% of birds were culled prior to roost abandonment. The roost culling effort was conducted during the COVID-19 pandemic, when tourist numbers and foot traffic were greatly reduced. It is unknown how public perception of roost culling in public areas may impact future efforts. Findings suggest roost culling can be utilized for management of nonnative roseringed parakeet populations when roost size is small enough and staff size large enough to cull entire roosts in no greater than two consecutive nights (e.g., if two shooters are available for three hours per night, roost culling should only be attempted on a roost with ≤ 540 rose-ringed parakeets)

    Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA

    Get PDF
    The selective degradation of mutated mitochondrial DNA (mtDNA) molecules is a potential strategy to re-populate cells with wild-type (wt) mtDNA molecules and thereby alleviate the defective mitochondrial function that underlies mtDNA diseases. Zinc finger nucleases (ZFNs), which are nucleases conjugated to a zinc-finger peptide (ZFP) engineered to bind a specific DNA sequence, could be useful for the selective degradation of particular mtDNA sequences. Typically, pairs of complementary ZFNs are used that heterodimerize on the target DNA sequence; however, conventional ZFNs were ineffective in our system. To overcome this, we created single-chain ZFNs by conjugating two FokI nuclease domains, connected by a flexible linker, to a ZFP with an N-terminal mitochondrial targeting sequence. Here we show that these ZFNs are efficiently transported into mitochondria in cells and bind mtDNA in a sequence-specific manner discriminating between two 12-bp long sequences that differ by a single base pair. Due to their selective binding they cleave dsDNA at predicted sites adjacent to the mutation. When expressed in heteroplasmic cells containing a mixture of mutated and wt mtDNA these ZFNs selectively degrade mutated mtDNA, thereby increasing the proportion of wt mtDNA molecules in the cell. Therefore, mitochondria-targeted single-chain ZFNs are a promising candidate approach for the treatment of mtDNA diseases

    Tailor-Made Zinc-Finger Transcription Factors Activate FLO11 Gene Expression with Phenotypic Consequences in the Yeast Saccharomyces cerevisiae

    Get PDF
    Cys2His2 zinc fingers are eukaryotic DNA-binding motifs, capable of distinguishing different DNA sequences, and are suitable for engineering artificial transcription factors. In this work, we used the budding yeast Saccharomyces cerevisiae to study the ability of tailor-made zinc finger proteins to activate the expression of the FLO11 gene, with phenotypic consequences. Two three-finger peptides were identified, recognizing sites from the 5′ UTR of the FLO11 gene with nanomolar DNA-binding affinity. The three-finger domains and their combined six-finger motif, recognizing an 18-bp site, were fused to the activation domain of VP16 or VP64. These transcription factor constructs retained their DNA-binding ability, with the six-finger ones being the highest in affinity. However, when expressed in haploid yeast cells, only one three-finger recombinant transcription factor was able to activate the expression of FLO11 efficiently. Unlike in the wild-type, cells with such transcriptional activation displayed invasive growth and biofilm formation, without any requirement for glucose depletion. The VP16 and VP64 domains appeared to act equally well in the activation of FLO11 expression, with comparable effects in phenotypic alteration. We conclude that the functional activity of tailor-made transcription factors in cells is not easily predicted by the in vitro DNA-binding activity

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Francis Crick (8 June 1916-28 July 2004): A Memoir

    No full text
    corecore