16 research outputs found

    Enabling III-V-based optoelectronics with low-cost dynamic hydride vapor phase epitaxy

    Full text link
    Silicon is the dominant semiconductor in many semiconductor device applications for a variety of reasons, including both performance and cost. III-V materials have improved performance compared to silicon, but currently they are relegated to applications in high-value or niche markets due to the absence of a low-cost, high-quality production technique. Here we present an advance in III-V materials synthesis using hydride vapor phase epitaxy that has the potential to lower III-V semiconductor deposition costs by orders of magnitude while maintaining the requisite optoelectronic material quality that enables III-V-based technologies to outperform Si. We demonstrate the impacts of this advance by addressing the use of III-Vs in terrestrial photovoltaics, a highly cost-constrained market. The emergence of a low-cost III-V deposition technique will enable III-V electronic and opto-electronic devices, with all the benefits that they bring, to permeate throughout modern society.Comment: pre-prin

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Room-Temperature Electron Spin Amplifier Base on Ga(In)NAs Alloys

    No full text
    The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency up to 1 GHz

    Dominant recombination centers in Ga(In)NAs alloys: Ga interstitials

    No full text
    Opticallydetected magnetic resonance measurements are carried out to study formationof Ga interstitial-related defects in Ga(In)NAs alloys. The defects, whichare among dominant nonradiative recombination centers that control carrier lifetimein Ga(In)NAs, are unambiguously proven to be common grown-in defectsin these alloys independent of the employed growth methods. Thedefects formation is suggested to become thermodynamically favorable because ofthe presence of nitrogen, possibly due to local strain compensation.Original Publication: Xingjun Wang, Yuttapoom Puttisong, C. W. Tu, Aaron J. Ptak, V. K. Kalevich, A. Yu. Egorov, L. Geelhaar, H. Riechert, Weimin Chen and Irina Buyanova, Dominant recombination centers in Ga(In)NAs alloys: Ga interstitials, 2009, Applied Physics Letters, (95), 241904. http://dx.doi.org/10.1063/1.3275703 Copyright: American Institute of Physics http://www.aip.org
    corecore