5 research outputs found

    Epithelial-to-Mesenchymal Transition Contributes to Immunosuppression in Breast Carcinomas

    Get PDF
    The epithelial-to-mesenchymal transition (EMT) is a cell biological program that confers mesenchymal traits on carcinoma cells and drives their metastatic dissemination. It is unclear, however, whether the activation of EMT in carcinoma cells can change their susceptibility to immune attack. We demonstrate here that mammary tumor cells arising from more epithelial carcinoma cell lines expressed high levels of MHC-I, low levels of PD-L1, and contained within their stroma CD8þT cells and M1 (antitumor) macrophages. In contrast, tumors arising from more mesenchymal carcinoma cell lines exhibiting EMT markers expressed low levels of MHC-I, high levels of PD-L1, and contained within their stroma regulatory T cells, M2 (protumor) macrophages, and exhausted CD8þT cells. Moreover, the more mesenchymal carcinoma cells within a tumor retained the ability to protect their more epithelial counterparts from immune attack. Finally, epithelial tumors were more susceptible to elimination by immunotherapy than corresponding mesenchymal tumors. Our results identify immune cells and immunomodulatory markers that can be potentially targeted to enhance the susceptibility of immunosuppressive tumors to various therapeutic regimens.National Institutes of Health (U.S.) (Grant P01-CA080111

    Toward Precision Phenotyping of Multiple Sclerosis

    Get PDF
    The classification of multiple sclerosis (MS) has been established by Lublin in 1996 and revised in 2013. The revision includes clinically isolated syndrome, relapsing-remitting, primary progressive and secondary progressive MS, and has added activity (i.e., formation of white matter lesions or clinical relapses) as a qualifier. This allows for the distinction between active and nonactive progression, which has been shown to be of clinical importance. We propose that a logical extension of this classification is the incorporation of additional key pathological processes, such as chronic perilesional inflammation, neuroaxonal degeneration, and remyelination. This will distinguish MS phenotypes that may present as clinically identical but are driven by different combinations of pathological processes. A more precise description of MS phenotypes will improve prognostication and personalized care as well as clinical trial design. Thus, our proposal provides an expanded framework for conceptualizing MS and for guiding development of biomarkers for monitoring activity along the main pathological axes in MS.</p

    Pulmonary Artery Adventitial Fibroblasts Cooperate with Vasa Vasorum Endothelial Cells to Regulate Vasa Vasorum Neovascularization : A Process Mediated by Hypoxia and Endothelin-1

    No full text
    The precise cellular and molecular mechanisms regulating adventitial vasa vasorum neovascularization, which occurs in the pulmonary arterial circulation in response to hypoxia, remain unknown. Here, using a technique to isolate and culture adventitial fibroblasts (AdvFBs) and vasa vasorum endothelial cells (VVECs) from the adventitia of pulmonary arteries, we report that hypoxia-activated pulmonary artery AdvFBs exhibited pro-angiogenic properties and influenced the angiogenic phenotype of VVEC, in a process of cell-cell communication involving endothelin-1 (ET-1). We demonstrated that AdvFBs, either via co-culture or conditioned media, stimulated VVEC proliferation and augmented the self-assembly and integrity of cord-like networks that formed when VVECs where cultured on Matrigel. In addition, hypoxia-activated AdvFBs produced ET-1, suggesting a paracrine role for this pro-angiogenic molecule in these processes. When co-cultured on Matrigel, AdvFBs and VVECs self-assembled into heterotypic cord-like networks, a process augmented by hypoxia but attenuated by either selective endothelin receptor antagonists or oligonucleotides targeting prepro-ET-1 mRNA. From these observations, we propose that hypoxia-activated AdvFBs exhibit pro-angiogenic properties and, as such, communicate with VVECs, in a process involving ET-1, to regulate vasa vasorum neovascularization occurring in the adventitia of pulmonary arteries in response to chronic hypoxia

    Toward precision phenotyping of multiple sclerosis

    No full text
    The classification of multiple sclerosis (MS) has been established by Lublin in 1996 and revised in 2013. The revision includes clinically isolated syndrome, relapsing-remitting, primary progressive and secondary progressive MS, and has added activity (i.e., formation of white matter lesions or clinical relapses) as a qualifier. This allows for the distinction between active and nonactive progression, which has been shown to be of clinical importance. We propose that a logical extension of this classification is the incorporation of additional key pathological processes, such as chronic perilesional inflammation, neuroaxonal degeneration, and remyelination. This will distinguish MS phenotypes that may present as clinically identical but are driven by different combinations of pathological processes. A more precise description of MS phenotypes will improve prognostication and personalized care as well as clinical trial design. Thus, our proposal provides an expanded framework for conceptualizing MS and for guiding development of biomarkers for monitoring activity along the main pathological axes in MS.Published versionStudy Funding: Supported in part by NIH grants R01 NS102267 and R01 NS112907 (D.P.) and a career transition fellowship from the Consortium of Multiple Sclerosis Centers and the National Multiple Sclerosis Society (M.R.L.). The Article Processing Charge was funded by the authors
    corecore