231 research outputs found
Antimicrobial resistance and antimicrobial use animal monitoring policies in Europe: Where are we?
The World Health Organization has recognized antimicrobial resistance as one of the top three threats to human health. Any use of antibiotics in animals will ultimately affect humans and vice versa. Appropriate monitoring of antimicrobial use and resistance has been repeatedly emphasized along with the need for global policies. Under the auspices of the European Union research project, EFFORT, we mapped antimicrobial use and resistance monitoring programs in ten European countries. We then compared international and European guidelines and policies. In resistance monitoring, we did not find important differences between countries. Current resistance monitoring systems are focused on food animal species (using fecal samples). They ignore companion animals. The scenario is different for monitoring antibiotics use. Recently, countries have tried to harmonize methodologies, but reporting of antimicrobial use remains voluntary. We therefore identified a need for stronger policies
In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections
PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data.
Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now many completely sequenced genomes available from both human pathogenic and innocuous strains. The data can be used to identify gene families that correlate with pathogenicity and to develop tools to predict the pathogenicity of newly sequenced strains, investigations that previously were mainly done by means of more expensive and time consuming experimental approaches. We describe PathogenFinde
Antimicrobial Resistance, Virulence Factors and Genetic Diversity of Escherichia coli Isolates from Household Water Supply in Dhaka, Bangladesh
Background: Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity. Methodology/Principal Findings: A total of 233 E. coli isolates obtained from 175 tap water samples were analysed for susceptibility to 16 different antibiotics and for the presence of genes associated with virulence and antibiotic resistance. Nearly 36% (n = 84) of the isolates were multi-drug(≥3 classes of antibiotics) resistant (MDR) and 26% (n = 22) of these were positive for extended spectrum β-lactamase (ESBL). Of the 22 ESBL-producers, 20 were positive for blaCTX-M-15, 7 for blaOXA-1-group(all had blaOXA-47) and 2 for blaCMY-2. Quinolone resistance genes, qnrS and qnrB were detected in 6 and 2 isolates, respectively. Around 7% (n = 16) of the isolates carried virulence gene(s) characteristic of pathogenic E. coli; 11 of these contained lt and/or st and thus belonged to enterotoxigenic E. coli and 5 contained bfp and eae and thus belonged to enteropathogenic E. coli. All MDR isolates carried multiple plasmids (2 to 8) of varying sizes ranging from 1.2 to >120 MDa. Ampicillin and ceftriaxone resistance were co-transferred in conjugative plasmids of 70 to 100 MDa in size, while ampicillin, trimethoprim-sulfamethoxazole and tetracycline resistance were co-transferred in conjugative plasmids of 50 to 90 MDa. Pulsed-field gel electrophoresis analysis revealed diverse genetic fingerprints of pathogenic isolates. Significance: Multi-drug resistant E. coli are wide spread in public water supply in Dhaka city, Bangladesh. Transmission of resistant bacteria and plasmids through supply water pose serious threats to public health in urban areas
Resistance to penicillin of Staphylococcus aureus isolates from cows with high somatic cell counts in organic and conventional dairy herds in Denmark
BACKGROUND: Quarter milk samples from cows with high risk of intramammary infection were examined to determine the prevalence of Staphylococcus aureus (SA) and penicillin resistant SA (SAr) in conventional and organic dairy herds and herds converting to organic farming in a combined longitudinal and cross-sectional study. METHODS: 20 conventional herds, 18 organic herds that converted before 1995, and 19 herds converting to organic farming in 1999 or 2000 were included in the study. Herds converting to organic farming were sampled three times one year apart; the other herds were sampled once. Risk of infection was estimated based on somatic cell count, milk production, breed, age and lactation stage. RESULTS: The high-risk cows represented about 49 % of the cows in the herds. The overall prevalence of SA and SAr among these cows was 29% (95% confidence interval: 24%–34%) and 4% (95% confidence interval: 2%–5%) respectively. The prevalence of penicillin resistance among SA infected cows was 12% (95% confidence interval: 6%–19%) when calculated from the first herd visits. No statistically significant differences were observed in the prevalence of SAr or the proportion of isolates resistant to penicillin between herd groups. CONCLUSION: The proportion of isolates resistant to penicillin was low compared to studies in other countries except Norway and Sweden. Based on the low prevalence of penicillin resistance of SA, penicillin should still be the first choice of antimicrobial agent for treatment of bovine intramammary infection in Denmark
Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104
It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ∼1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in ∼1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ∼1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections
Vaccines as alternatives to antibiotics for food producing animals. Part 1:challenges and needs
Vaccines and other alternative products can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations, and are central to the future success of animal agriculture. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, part of a two-part series, synthesizes and expands on the expert panel discussions regarding opportunities, challenges and needs for the development of vaccines that may reduce the need for use of antibiotics in animals; new approaches and potential solutions will be discussed in part 2 of this series. Vaccines are widely used to prevent infections in food animals. Various studies have demonstrated that their animal agricultural use can lead to significant reductions in antibiotic consumption, making them promising alternatives to antibiotics. To be widely used in food producing animals, vaccines have to be safe, effective, easy to use, and cost-effective. Many current vaccines fall short in one or more of these respects. Scientific advancements may allow many of these limitations to be overcome, but progress is funding-dependent. Research will have to be prioritized to ensure scarce public resources are dedicated to areas of potentially greatest impact first, and private investments into vaccine development constantly compete with other investment opportunities. Although vaccines have the potential to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks, targeted research and development investments and concerted efforts by all affected are needed to realize that potential
Evaluation of Petrifilm™ Select E. coli Count Plate medium to discriminate antimicrobial resistant Escherichia coli
<p>Abstract</p> <p>Background</p> <p>Screening and enumeration of antimicrobial resistant <it>Escherichia coli </it>directly from samples is needed to identify emerging resistant clones and obtain quantitative data for risk assessment. Aim of this study was to evaluate the performance of 3M™ Petrifilm™ Select <it>E. coli </it>Count Plate (SEC plate) supplemented with antimicrobials to discriminate antimicrobial-resistant and non-resistant <it>E. coli</it>.</p> <p>Method</p> <p>A range of <it>E. coli </it>isolates were tested by agar dilution method comparing the Minimal Inhibitory Concentration (MIC) for eight antimicrobials obtained by Mueller-Hinton II agar, MacConkey agar and SEC plates. Kappa statistics was used to assess the levels of agreement when classifying strains as resistant, intermediate or susceptible.</p> <p>Results</p> <p>SEC plate showed that 74% of all strains agreed within ± 1 log<sub>2 </sub>dilution when comparing MICs with Mueller-Hinton II media. High agreement levels were found for gentamicin, ampicillin, chloramphenicol and cefotaxime, resulting in a kappa value of 0.9 and 100% agreement within ± 1 log<sub>2 </sub>dilution. Significant variances were observed for oxytetracycline and sulphamethoxazole. Further tests showed that the observed discrepancy in classification of susceptibility to oxytetracycline by the two media could be overcome when a plate-dependent breakpoint of 64 mg/L was used for SEC plates. For sulphamethoxazole, SEC plates provided unacceptably high MICs.</p> <p>Conclusion</p> <p>SEC plates showed good agreement with Mueller-Hinton II agar in MIC studies and can be used to screen and discriminate resistant <it>E. coli </it>for ampicillin, cephalothin, streptomycin, chloramphenicol, cefotaxime and gentamicin using CLSI standardized breakpoints, but not for sulphamethoxazole. SEC plates can also be used to discriminate oxytetracycline-resistant <it>E. coli </it>if a plate-dependent breakpoint value of 64 mg/L is used.</p
Coagulase gene polymorphism of Staphylococcus aureus isolated from clinical and sub-clinical bovine mastitis in Isfahan and Chaharmahal va Bakhtiari provinces of Iran
Mastitis is a common disease in dairy cattle and is an inflammatory response of the breast tissue to bacterial attack to this tissue. Mastitis causes considerable loss to the dairy industry, among the several bacterial pathogens that can cause mastitis; Staphylococcus aureus is probably the most lethal agent because it causes chronic and deep infection in the mammary glands that is extremely difficult to cure. Several virulence factors including coagulase gene are produced by S. aureus and may contribute to its pathogenicity. This study was conducted to investigate the coagulase gene polymorphism of S. aureus isolated from clinical and sub-clinical bovine mastitis milk samples in Isfahan and Chaharmahal va Bakhtiari provinces of Iran. Amplification of the coagulase gene from 86 S. aureus strains isolates by specific primers showed 31 specimens contained 970 bp fragment, and 11 strains contained 730 bp fragment relevant to coa gene (coagulase) in PCR. After enzymatic digestion with AluI, 31 specimens contained three bands: 320, 490, and 160 bp (genotype I) and 11 specimens contained two bands: 490 and 240 bp (genotype VIII) in the RFLP
Salmonella enterica serotype Virchow associated with human infections in Switzerland: 2004-2009
BACKGROUND: Salmonellosis is one of the most important foodborne diseases and a major threat to public health. Salmonella serotype Virchow ranks among the top five serovars in Europe. METHOD: A total of 153 strains isolated from different patients from 2004 through 2009 in Switzerland were further characterized by (i) assessing phenotypic antibiotic resistance profiles using the disk diffusion method and (ii) by genotyping using pulsed-field gel electrophoresis (PFGE) after macrorestriction with XbaI in order to evaluate strain relationship. RESULTS: The relative frequency of S. Virchow among other Salmonella serovars varied between 4th to 8th rank. The annual incidence ranged from 0.45/100'000 in 2004 to 0.40/100'000 in 2009. A total of 48 strains (32%) were resistant to one to 3 antimicrobials, 54 strains (36%) displayed resistance patterns to more than three antibiotics. No trend was identifiable over the years 2004 to 2009. We found a high prevalence (62%) of nalidixic acid resistant strains, suggesting an equally high rate of decreased fluoroqionolone susceptibility, whereas intermediate resistance to ciprofloxacin was negligible. Two strains were extended spectrum β-lactamase (ESBL) producers. Analysis of PFGE patterns uncovered a predominant cluster (similarity coefficient above 80%) consisting of 104 of the 153 strains. CONCLUSION: The worldwide increase of antibiotic resistances in Salmonella is an emerging public health problem. For Switzerland, no clear trend is identifiable over the years 2004 to 2009 for S. Virchow. Antimicrobial susceptibility and resistance profiles varied considerably within this period. Nevertheless, the situation in Switzerland coincided with findings in other European countries. Genotyping results of this strain collection revealed no evidence for an undetected outbreak within this time period
- …
