4 research outputs found

    Impact of horizontal resolution on monsoon precipitation for CORDEX-South Asia: A regional earth system model assessment

    Get PDF
    For the first time for CORDEX-South Asia, a high-resolution regional earth system model (ROM) is adopted to assess the impact of horizontal resolution (0.22◦ and 0.11◦) in simulating the Indian summer monsoon rainfall (ISMR) and the underlying spatiotemporal variability. ROM at both resolutions bears a close resemblance to observations in simulating the mean precipitation climatology compared to other regional climate models (RCMs) participated in CORDEX- South Asia. ROM shows substantial improvement relative to the ensemble mean of the RCMs included in CORDEX-South Asia. While comparing both simulations with observations, some sys-tematic wet and dry bias over Central India (CI) and Northern Western Ghats is noticed. In general, the wet/dry bias over India is mainly associated with the overestimation/underestimation of the large-scale/convective component. Increasing horizontal resolution from 0.22◦ to 0.11◦ significantly adds value in simulating the JJAS mean precipitation by reducing the wet bias over western central India (WCI) and southern peninsular India and dry bias over eastern CI. The reduction in wet/dry bias is mainly associated with suppression/enhancement of the large scale/convective precipitation. This improvement in mean precipitation is partially due to the improved representation of the propagation of mesoscale systems such as boreal summer intraseasonal oscilla-tion (eastward and northward). Despite the above improvements, the wet precipitation bias, particularly over WCI, persists. The weaker Findlater Jet associated with weaker land-ocean thermal contrast caused by the warm sea surface temperature (SST) bias over the western Arabian Sea (AS) suggests that AS moisture transport does not contribute to the wet bias over India. The wet bias is possibly associated with favourable atmospheric conditions (atmospheric instability)

    Regional earth system modelling framework for CORDEX-SA: an integrated model assessment for Indian summer monsoon rainfall

    Get PDF
    An effort is made to implement a regional earth system model (RESM); ROM, over CORDEX-South Asia (SA). The added value of RESM is assessed for mean precipitation, its variability (intraseasonal to interannual), extremes, and associated processes. In this regard, ROM’s fields are compared with the respective fields of its standalone version (REMO), the models belonging coupled model intercomparison project (CMIP5 and CMIP6), and regional climate models of CORDEX-CORE simulations. RESM shows substantial improvement for most of the Indian monsoon’s aspects; however, the magnitude of the value addition varies spatiotemporally and also with different aspects.. The improved representation of intraseasonal variability (active-break spell’s duration and intensity) and Interannual variability attributed to improved mean seasonal precipitation. Additionally, correct representation of sea surface temperature, Indian Ocean Dipole, and its underlying dynamics also contribute to improving the mean precipitation. The notable improvement is seen especially over the south-eastern regions of the Bay of Bengal (BoB) and South-Central India, where increasing (decreasing) low-pressure systems over Central India (BoB) are noticed as a consequence of air-sea coupling, leading to enhanced (reduced) precipitation over Central India (BoB), reducing dry (wet) bias found in REMO and the other models. Despite substantial improvements, RESM has a systematic wet bias in the mean precipitation associated with a warm bias over the western coast of the Arabian Sea. An overestimation of very high extreme precipitation due to the enhanced contribution of low-pressure systems indicates the model’s limitations, suggesting the need for further tuning of the RESM

    Challenges in understanding the variability of the cryosphere in the Himalaya and its impact on regional water resources

    Get PDF
    Authors are grateful to UKIERI and DST for supporting us financially through UKIERI-DST Partnership Development Workshops. RR would like to thank the funding agency Ministry of Earth Science (MoES), Government of India for the project titled Estimating Mass balance of glaciers in the Bhaga Basin, Western Himalaya using GPR and Remote Sensing methods (Grant Ref. No: MoES/PAMC/H&C/107/2018-PC-II dated 27.07.2019).The Himalaya plays a vital role in regulating the freshwater availability for nearly a billion people living in the Indus, Ganga, and Brahmaputra River basins. Due to climate change and constantly evolving human-hydrosphere interactions, including land use/cover changes, groundwater extraction, reservoir or dam construction, water availability has undergone significant change, and is expected to change further in the future. Therefore, understanding the spatiotemporal evolution of the hydrological cycle over the Himalaya and its river basins has been one of the most critical exercises toward ensuring regional water security. However, due to the lack of extensive in-situ measurements, complex hydro-climatic environment, and limited collaborative efforts, large gaps in our understanding exist. Moreover, there are several significant issues with available studies, such as lack of consistent hydro-meteorological datasets, very few attempts at integrating different data types, limited spatiotemporal sampling of hydro-meteorological measurements, lack of open access to in-situ datasets, poorly accounted anthropogenic climate feedbacks, and limited understanding of the hydro-meteorological drivers over the region. These factors result in large uncertainties in our estimates of current and future water availability over the Himalaya, which constraints the development of sustainable water management strategies for its river catchments hampering our preparedness for the current and future changes in hydro-climate. To address these issues, a partnership development workshop entitled “Water sEcurity assessment in rIvers oriGinating from Himalaya (WEIGH),” was conducted between the 07th and 11th September 2020. Based on the intense discussions and deliberations among the participants, the most important and urgent research questions were identified. This white paper synthesizes the current understanding, highlights, and the most significant research gaps and research priorities for studying water availability in the Himalaya.Publisher PDFPeer reviewe
    corecore