299 research outputs found

    Improved Cell-Free RNA and Protein Synthesis System

    Get PDF
    Cell-free RNA and protein synthesis (CFPS) is becoming increasingly used for protein production as yields increase and costs decrease. Advances in reconstituted CFPS systems such as the Protein synthesis Using Recombinant Elements (PURE) system offer new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, protein microarrays, isotopic labeling, and incorporating unnatural amino acids. In this study, using firefly luciferase synthesis as a reporter system, we improved PURE system productivity up to 5 fold by adding or adjusting a variety of factors that affect transcription and translation, including Elongation factors (EF-Ts, EF-Tu, EF-G, and EF4), ribosome recycling factor (RRF), release factors (RF1, RF2, RF3), chaperones (GroEL/ES), BSA and tRNAs. The work provides a more efficient defined in vitro transcription and translation system and a deeper understanding of the factors that limit the whole system efficiency

    Proteome-wide systems analysis of a cellulosic biofuel-producing microbe

    Get PDF
    We apply mass spectrometry-based ReDi proteomics to quantify the Clostridium phytofermentans proteome during fermentation of cellulosic substrates. ReDi proteomics gives accurate, low-cost quantification of an extra and intracellular microbial proteome. When combined with physiological measurements, these methods form a general systems biology strategy to evaluate the efficiency of cellulosic bioconversion and to identify enzyme targets to engineer for improving this process.C. phytofermentans expressed more than 100 carbohydrate-active enzymes, of which distinct subsets were upregulated on cellulose and hemicellulose. Numerous extracellular enzymes cleave insoluble plant polysaccharides into oligosaccharides, which are transported into the cell to be further degraded by intracellular carbohydratases. Sugars are catabolized by EMP glycolysis incorporating alternative glycolytic enzymes to maximize the ATP yield of anaerobic metabolism.During cellulosic fermentation, cells adhered to the substrate and altered metabolic processes such as upregulation of tryptophan and nicotinamide synthesis proteins and repression of proteins for fatty acid metabolism and cell motility. These diverse metabolic changes highlight how a systems approach can identify novel ways to optimize cellulosic fermentation

    Clustered alignments of gene-expression time series data

    Get PDF
    Motivation: Characterizing and comparing temporal gene-expression responses is an important computational task for answering a variety of questions in biological studies. Algorithms for aligning time series represent a valuable approach for such analyses. However, previous approaches to aligning gene-expression time series have assumed that all genes should share the same alignment. Our work is motivated by the need for methods that identify sets of genes that differ in similar ways between two time series, even when their expression profiles are quite different

    Automated Intelligent Monitoring and the Controlling Software System for Solar Panels

    Get PDF
    The inspection of the solar panels on a periodic basis is important to improve longevity and ensure performance of the solar system. To get the most solar potential of the photovoltaic (PV) system is possible through an intelligent monitoring & controlling system. The monitoring & controlling system has rapidly increased its popularity because of its user-friendly graphical interface for data acquisition, monitoring, controlling and measurements. In order to monitor the performance of the system especially for renewable energy source application such as solar photovoltaic (PV), data-acquisition systems had been used to collect all the data regarding the installed system. In this paper the development of a smart automated monitoring & controlling system for the solar panel is described, the core idea is based on IoT (the Internet of Things). The measurements of data are made using sensors, block management data acquisition modules, and a software system. Then, all the real-time data collection of the electrical output parameters of the PV plant such as voltage, current and generated electricity is displayed and stored in the block management. The proposed system is smart enough to make suggestions if the panel is not working properly, to display errors, to remind about maintenance of the system through email or SMS, and to rotate panels according to a sun position using the Ephemeral table that stored in the system. The advantages of the system are the performance of the solar panel system which can be monitored and analyzed

    Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability

    Get PDF
    Nitrogen (N) often limits biological productivity in the oceanic gyres where Prochlorococcus is the most abundant photosynthetic organism. The Prochlorococcus community is composed of strains, such as MED4 and MIT9313, that have different N utilization capabilities and that belong to ecotypes with different depth distributions. An interstrain comparison of how Prochlorococcus responds to changes in ambient nitrogen is thus central to understanding its ecology. We quantified changes in MED4 and MIT9313 global mRNA expression, chlorophyll fluorescence, and photosystem II photochemical efficiency (F(v)/F(m)) along a time series of increasing N starvation. In addition, the global expression of both strains growing in ammonium-replete medium was compared to expression during growth on alternative N sources. There were interstrain similarities in N regulation such as the activation of a putative NtcA regulon during N stress. There were also important differences between the strains such as in the expression patterns of carbon metabolism genes, suggesting that the two strains integrate N and C metabolism in fundamentally different ways

    Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53

    Get PDF
    Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets. Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region. Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes
    corecore