23 research outputs found
Bone refilling in cortical bone multicellular units: Insights into tetracycline double labelling from a computational model
Bone remodelling is carried out by `bone multicellular units' (BMUs) in which
active osteoclasts and active osteoblasts are spatially and temporally coupled.
The refilling of new bone by osteoblasts towards the back of the BMU occurs at
a rate that depends both on the number of osteoblasts and on their secretory
activity. In cortical bone, a linear phenomenological relationship between
matrix apposition rate (MAR) and BMU cavity radius is found experimentally. How
this relationship emerges from the combination of complex, nonlinear
regulations of osteoblast number and secretory activity is unknown.
Here, we extend our previous mathematical model of cell development within a
single BMU to investigate how osteoblast number and osteoblast secretory
activity vary along the BMU's closing cone. MARs predicted by the model are
compared with data from tetracycline double labelling experiments. We find that
the linear phenomenological relationship observed in these experiments between
MAR and BMU cavity radius holds for most of the refilling phase simulated by
our model, but not near the start and end of refilling. This suggests that at a
particular bone site undergoing remodelling, bone formation starts and ends
rapidly. Our model also suggests that part of the observed cross-sectional
variability in tetracycline data may be due to different bone sites being
refilled by BMUs at different stages of their lifetime. The different stages of
a BMU's lifetime depend on whether the cell populations within the BMU are
still developing or have reached a quasi-steady state while travelling through
bone. We find that due to their longer lifespan, active osteoblasts reach a
quasi-steady distribution more slowly than active osteoclasts. We suggest that
this fact may locally enlarge the Haversian canal diameter (due to a local lack
of osteoblasts compared to osteoclasts) near the BMU's point of origin.Comment: 16 pages, 6 figures, 3 tables. V3: minor changes: added 2 paragraphs
(BMU cavity in Section 2 and Model Robustness in Section 4), references
[52,54
Effectiveness of school food environment policies on children's dietary behaviors: A systematic review and meta-analysis.
BACKGROUND: School food environment policies may be a critical tool to promote healthy diets in children, yet their effectiveness remains unclear. OBJECTIVE: To systematically review and quantify the impact of school food environment policies on dietary habits, adiposity, and metabolic risk in children. METHODS: We systematically searched online databases for randomized or quasi-experimental interventions assessing effects of school food environment policies on children's dietary habits, adiposity, or metabolic risk factors. Data were extracted independently and in duplicate, and pooled using inverse-variance random-effects meta-analysis. Habitual (within+outside school) dietary intakes were the primary outcome. Heterogeneity was explored using meta-regression and subgroup analysis. Funnel plots, Begg's and Egger's test evaluated potential publication bias. RESULTS: From 6,636 abstracts, 91 interventions (55 in US/Canada, 36 in Europe/New Zealand) were included, on direct provision of healthful foods/beverages (N = 39 studies), competitive food/beverage standards (N = 29), and school meal standards (N = 39) (some interventions assessed multiple policies). Direct provision policies, which largely targeted fruits and vegetables, increased consumption of fruits by 0.27 servings/d (n = 15 estimates (95%CI: 0.17, 0.36)) and combined fruits and vegetables by 0.28 servings/d (n = 16 (0.17, 0.40)); with a slight impact on vegetables (n = 11; 0.04 (0.01, 0.08)), and no effects on total calories (n = 6; -56 kcal/d (-174, 62)). In interventions targeting water, habitual intake was unchanged (n = 3; 0.33 glasses/d (-0.27, 0.93)). Competitive food/beverage standards reduced sugar-sweetened beverage intake by 0.18 servings/d (n = 3 (-0.31, -0.05)); and unhealthy snacks by 0.17 servings/d (n = 2 (-0.22, -0.13)), without effects on total calories (n = 5; -79 kcal/d (-179, 21)). School meal standards (mainly lunch) increased fruit intake (n = 2; 0.76 servings/d (0.37, 1.16)) and reduced total fat (-1.49%energy; n = 6 (-2.42, -0.57)), saturated fat (n = 4; -0.93%energy (-1.15, -0.70)) and sodium (n = 4; -170 mg/d (-242, -98)); but not total calories (n = 8; -38 kcal/d (-137, 62)). In 17 studies evaluating adiposity, significant decreases were generally not identified; few studies assessed metabolic factors (blood lipids/glucose/pressure), with mixed findings. Significant sources of heterogeneity or publication bias were not identified. CONCLUSIONS: Specific school food environment policies can improve targeted dietary behaviors; effects on adiposity and metabolic risk require further investigation. These findings inform ongoing policy discussions and debates on best practices to improve childhood dietary habits and health
Using Osteoporosis Therapies in Combination
Purpose of review The objective of this review is to update evidence regarding the use of osteoporosis drugs in sequence or in combination to optimize increases in bone mass and strength. Recent findings Simultaneous use of denosumab plus teriparatide produces larger increases in BMD than does monotherapy. The use of bisphosphonates or denosumab after teriparatide results in progressive gains in BMD. When switching from bisphosphonates and especially denosumab to teriparatide, an overlap of 6-12 months may prevent the transient loss of BMD in cortical sites. Phase 3 trials document fracture risk reduction with anabolic therapy for 12-18 months followed by an anti-remodeling drug. Summary With the exception of adding teriparatide to ongoing denosumab therapy, there is little evidence to support the use of more than one osteoporosis drug at a time. In contrast, sequential therapy regimens of anabolic drugs followed by potent anti-remodeling agents will be the new standard for treating patients at imminent risk of fracture