12 research outputs found

    Zn(ii), Cd(ii) and Hg(ii) saccharinate complexes with 2,6-bis(2-benzimidazolyl)pyridine as promising anticancer agents in breast and lung cancer cell lines via ROS-induced apoptosis

    No full text
    New Zn(ii), Cd(ii) and Hg(ii) complexes of saccharinate (sac) and 2,6-bis(2-benzimidazolyl)pyridine (bzimpy), [Zn(bzimpy)(2)](sac)(2)center dot 2H(2)O (Zn), [Cd(sac)(2)(bzimpy)] (Cd) and [Hg(sac)(2)(bzimpy)] (Hg), were prepared and fully characterized by spectroscopic methods and X-ray crystallography.In vitroanticancer screening in A549 (lung), MCF-7 (breast) and HT29 (colon) cell lines showed thatZnwas highly cytotoxic against A549 and MCF-7 cells with IC(50)values of 1.74 +/- 0.06 and 3.15 +/- 0.10 mu M, respectively, andHgdemonstrated potent cytotoxic activity in MCF-7 cells (8.61 +/- 0.98 mu M), whileCdand bzimpy exhibited moderate growth inhibitory activities in all of the cell lines. In addition, they showed significantly lower toxicity towards normal human breast epithelial MCF10A cells. Moreover, the complexes exhibited significantly high nuclease activity towards plasmid DNA and their interactions with DNA were assessed by gel electrophoresis and DNA docking.ZnandHginduced G0/G1 cell arrest and apoptotic cell death detectedviatypical DNA condensation/fragmentation, annexin V staining and caspase 3/7 activity in A549 and MCF-7 cells. These complexes further caused depolarization of mitochondria and oxidative damage of genomic DNA following excessive production of reactive oxygen species (ROS)

    New manganese(II), iron(II), cobalt(II), nickel(II) and copper(II) saccharinate complexes of 2,6-bis(2-benzimidazolyl)pyridine as potential anticancer agents

    No full text
    New mononuclear complexes [Mn(NO3)(sac)(H2O)(bzimpy)]center dot 2DMF (Mn), [Fe(sac)(2)(H2O)(bzimpy)]center dot 2H(2)O (Fe), [Co(bzimpy)(2)](sac)(2)center dot 2H(2)O (Co), [Ni(bzimpy)(2)](sac)(2)center dot H2O center dot i-PrOH (Ni) and [Cu(sac)(2)(bzimpy)]center dot 3DMF (Cu) (sac = saccharinate and bzimpy = 2,6-bis(2-benzimidazolyl)pyridine) were synthesized and structurally characterized by elemental analysis, UV-Vis, IR, ESI-MS and X-ray diffraction. The anticancer activity of the metal complexes against A549 (lung), MCF-7 (breast), HT29 (colon) cancer cells and MCF10A (normal human breast epithelial) cells was tested and compared with those of cisplatin and bzimpy. The complexes displayed potent cytotoxic activity especially in MCF-7 and A549 cell lines, but they were practically inactive against the normal cells. Mechanistic studies with Mn and Cu complexes on A549 cells indicated that the complexes induced G0/G1 arrest. Both complexes increased intracellular ROS (reactive oxygen species) levels and successfully caused both mitochondrial dysfunction and doublestrand DNA breaks. The up-regulated Bax and down-regulated Bcl-2 expression levels, caspase-3/7 activation and reduced Fas expression indicated that Mn and Cu induced ROS-dependent mitochondria-mediated intrinsic apoptosis in A549 cells. (C) 2020 Elsevier Masson SAS. All rights reserved

    A nucleic acid-based electrochemical biosensor for the detection of influenza B virus from PCR samples using gold nanoparticle-adsorbed disposable graphite electrode and Meldola's blue as an intercalator

    No full text
    WOS: 000292979500025In the presented study, a novel method is introduced that demonstrates the electrochemical detection of influenza B virus based on DNA hybridisation. The detection utilised gold nanoparticles (AuNPs) and Meldola's Blue (MDB), which is utilised as an intercalator label. The developed methodology, combined with a disposable pencil graphite electrode (PGE) and differential pulse voltammetry (DPV), was performed using both synthetic oligonucleotides and polymerase chain reaction (PCR) amplicons. The electrochemical oxidation response of guanine (approximately +0.1 V) and the voltammetric reduction signal of MDB (approximately -0.2 V) were measured before and after hybridisation reactions between a single strand DNA probe and its complementary target strain (synthetic target or denatured PCR samples). Before the immobilisation of the synthetic DNA probe of influenza type B virus, the transducer surface was interacted with AuNPs solution using a simple wet adsorption method. AuNP immobilisation was confirmed with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) to characterise the recognition surface of the genosensor. After the interaction between the PGE and AuNPs, a thiol-linked DNA probe was immobilised onto the nanoparticle-covered surface. When hybridisation occurred between the probe and its synthetic targets or specific PCR products, the highest MDB signal was observed. The probes were also challenged with equal quantities of non-complementary DNA at the PGE surface for the determination of biosensor selectivity. AuNP-coated electrodes showed high sensitivity and selectivity, specifically in real samples for the detection of the hybridisation reaction. The results obtained in the presented study indicated that the electrode surface area could be enhanced with AuNPs. The detection limit of the genosensor was found to be 54 picomoles for the synthetic target and 3.3 x 10(7) molecules for the real samples (PCR) in 30 mu L of sample volume. Future prospects and analytical performance of the sensor is briefly discussed.TUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [SBAG-107S163]; Pharmaceutical Sciences Research Centre (FABAL) of Ege University, Faculty of PharmacyEge UniversityThe authors acknowledge financial support from TUBITAK (Projects SBAG-107S163) and the Pharmaceutical Sciences Research Centre (FABAL) of Ege University, Faculty of Pharmacy

    Different DNA Immobilization Strategies for the Interaction of Anticancer Drug Irinotecan with DNA Based on Electrochemical DNA Biosensors

    No full text
    WOS: 000280524700004PubMed ID: 20426745The interaction of anticancer drug irinotecan (CPT-11), which is the inhibitor of the Topoisomerase I enzyme, with fish sperm double stranded deoxyribonucleic acid (dsDNA) and synthetic short oligonucleotides were studied electrochemically based on the oxidation signals of guanine and CPT-11 by using differential pulse voltammetry (DPV) and cyclic voltammetry (CV) at pencil graphite electrode (PGE). In this work, three types of methods, such as adsorption, covalent attachment and electrostatic binding were used for the immobilization of DNA onto the PGE surface. It is found that an effective modification method for DNA on the electrode surface is very important because it effects the drug and DNA interaction. As a result of the interaction, the electrochemical signal of guanine and CPT-11 greatly decreased. Experimental parameters, such as the effect of buffer solution on the interaction between CPT-11 and DNA, the concentration of CPT-11/DNA, the immobilization time of DNA and the accumulation time of CPT-11 were studied in DPV; in addition, the interaction of CPT-11 with oligonucleotides was evaluated for using as a hybridization indicator in CV and DPV. The detection limit and the reproducibility were also determined

    Structures and biochemical evaluation of silver(I) 5,5-diethylbarbiturate complexes with bis(diphenylphosphino)alkanes as potential antimicrobial and anticancer agents

    No full text
    New silver(I) 5,5-diethylbarbiturate (barb) complexes with a series of bis(diphenylphosphino)alkanes such as 1,1-bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis-(diphenylphosphino)propane (dppp) and 1,4-bis(diphenylphosphino)butane (dppb) were synthesized and characterized. [Ag-2(barb)(2)(mu-dppm)(2) (1), [Ag-2(barb)(2)(mu-dppe)(DMSO)(2)] (2) and [Ag-2(barb)(2)( dppp)2](3) were binuclear, while [Ag(barb)(mu-dppb)] (4) was a coordination polymer. 1-4 effectively bind to the G/C rich region of the major groove of DNA and interact with BSA via hydrophobic interactions in accordance with molecular docking studies. All complexes displayed significant DNA cleavage in the presence of H2O2. 1-4 exhibited more specificity against Gram-positive bacteria than Gram-negative bacteria, but 2 targets both bacterial strains, being comparable to AgNO3 and silver sulfadiazine. Complex 1 has a strong growth inhibitory effect on A549 cells, while 2 and 3 exhibit considerable cytotoxicity against MCF-7 cells. The complexes showed high accumulation in the cytosol fraction of the cells. Mechanistic studies showed that 1 and 2 display effective cell growth inhibition by triggering S and G2/M phase arrest, induce apoptosis via mitochondrial pathways and also damage to DNA due to the overproduction of ROS. (C) 2017 Elsevier Masson SAS. All rights reserved

    Palladium (II) complex and thalidomide intercept angiogenic signaling via targeting FAK/Src and Erk/Akt/PLC gamma dependent autophagy pathways in human umbilical vein endothelial cells

    No full text
    The current study assessed the effects of the thalidomide and palladium (II) saccharinate complex of terpyridine on the suppression of angiogenesis-mediated cell proliferation. The viability was assessed after treatment with palladium (II) complex (1.56-100 mu M) and thalidomide (0.1-400 mu M) alone by using ATP assay for 48 h. Palladium (II) complex was found to inhibit growth statistically significant in a dose-dependent manner in HUVECs and promoted PARP-1 cleavage through the production of ROS. On the other hand, thalidomide did not cause any significant change in cell viability. Moreover, cell death was observed to be manifested as late apoptosis due to Annexin V/SYTOX staining after palladium (II) complex treatment however, thalidomide did not demonstrate similar results. Thalidomide and palladium (II) complex also suppressed HUVEC migration and capillary-like structure tube formation in vitro in a time-dependent manner. Palladium (II) complex (5 mg/ml) treatment showed a strong antiangiogenic effect similar to positive control thalidomide (5 mg/ml) and suc-cessfully disrupted the vasculature and reduced the thickness of the vessels compared to control (agar). Furthermore, suppression of autophagy enhanced the cell death and anti-angiogenic effect of thalidomide and palladium (II) complex. We also showed that being treated with thalidomide and palladium (II) complex inhibited phosphorylation of the signaling regulators downstream of the VEGFR2. These results provide evidence for the regulation of endothelial cell functions that are relevant to angiogenesis through the suppression of the FAK/Src/Akt/ERK1/2 signaling pathway. Our results also indicate that PLC-gamma 1 phosphorylation leads to acti-vation of p-Akt and p-Erk1/2 which cause stimulation on cell proliferation at lower doses. Hence, we demon-strated that palladium (II) and thalidomide can induce cell death via the Erk/Akt/PLC gamma signaling pathway and that this pathway might be a novel mechanism

    Fabrication of a Dual-Drug-Loaded Smart Niosome-g-Chitosan Polymeric Platform for Lung Cancer Treatment

    No full text
    Changes in weather conditions and lifestyle lead to an annual increase in the amount of lung cancer, and therefore it is one of the three most common types of cancer, making it important to find an appropriate treatment method. This research aims to introduce a new smart nano-drug delivery system with antibacterial and anticancer capabilities that could be applied for the treatment of lung cancer. It is composed of a niosomal carrier containing curcumin as an anticancer drug and is coated with a chitosan polymeric shell, alongside Rose Bengal (RB) as a photosensitizer with an antibacterial feature. The characterization results confirmed the successful fabrication of lipid-polymeric carriers with a size of nearly 80 nm and encapsulation efficiency of about 97% and 98% for curcumin and RB, respectively. It had the Korsmeyer–Peppas release pattern model with pH and temperature responsivity so that nearly 60% and 35% of RB and curcumin were released at 37 °C and pH 5.5. Moreover, it showed nearly 50% toxicity against lung cancer cells over 72 h and antibacterial activity against Escherichia coli. Accordingly, this nanoformulation could be considered a candidate for the treatment of lung cancer; however, in vivo studies are needed for better confirmation

    Anti-angiogenic effect of a Palladium(II)-Saccharinate Complex of Terpyridine in vitro and in vivo

    No full text
    Anti-angiogenic activity of palladium (Pd) (II)-based complexes is unknown despite their quite powerful anticancer activity. This study was therefore carried out to evaluate both in vivo anti-angiogenic effect and in vitro cytotoxic activity of a Pd(II)-based complex. ([Pd(sac)(terpy)](sac).4H(2)O(sac = saccharinate and terpy = 2,2':6',2 ''-terpyridine)) on HUVEC cells

    Chloroquine used in combination with chemotherapy synergistically suppresses growth and angiogenesis in vitro and in vivo

    No full text
    Background: The inhibition of autophagy using pharmacological inhibitors such as chloroquine may be an effective strategy to overcome chemotherapy or resistance to anti-angiogenic therapy. Materials and Methods: The cytotoxic effect of doxorubicin (0.1-1 mu M), chloroquine (0.25-32 ,mu M) and their combination were investigated by employing ATP assay in human umbilical vein endothelial cells (HUVECs). The effect of doxorubicin and chloroquine combination was also measured using tube formation assay on Matrigel. The anti-angiogenic activities of doxorubicin (2.5 mu g/pellet) and chloroquine (15 mu g/pellet), their combination, and standards (50 mu g/pellet) were tested in vivo using the chick embryo chorioallantoic membrane (CAM) assay. Results: The combination of doxorubicin and chloroquine significantly had a stronger anti-angiogenic effect than the positive control (+/-)-thalidomide and doxorubicin alone in the CAM assay and in vitro tube-formation assay. Conclusion: Chloroquine enhanced the anti-angiogenic effect of doxorubicin on CAM at the tested concentrations.İstanbul Üniversitesi - 49841 - 55089 - 21160 - 20856 - 49997 - 53382Kinik Compan
    corecore