33 research outputs found

    TMPS: Ticket-Mediated Password Strengthening

    Get PDF
    We introduce the notion of Ticket-Mediated Password Strengthening (TMPS), a technique for allowing users to derive keys from passwords while imposing a strict limit on the number of guesses of their password any attacker can make, and strongly protecting the users\u27 privacy. We describe the security requirements of TMPS, and then a set of efficient and practical protocols to implement a TMPS scheme, requiring only hash functions, CCA2-secure encryption, and blind signatures. We provide several variant protocols, including an offline symmetric-only protocol that uses a local trusted computing environment, and online variants that use group signatures or stronger trust assumptions instead of blind signatures. We formalize the security of our scheme by defining an ideal functionality in the Universal Composability (UC) framework, and by providing game-based definitions of security. We prove that our protocol realizes the ideal functionality in the random oracle model (ROM) under adaptive corruptions with erasures, and prove that security with respect to the ideal/real definition implies security with respect to the game-based definitions

    Optimally Efficient Multi-Party Fair Exchange and Fair Secure Multi-Party Computation

    Get PDF
    Multi-party fair exchange (MFE) and fair secure multi-party computation (fair SMPC) are under-studied fields of research, with practical importance. We examine MFE scenarios where every participant has some item, and at the end of the protocol, either every participant receives every other participant’s item, or no participant receives anything. This is a particularly hard scenario, even though it is directly applicable to protocols such as fair SMPC or multi-party contract signing. We further generalize our protocol to work for any exchange topology. We analyse the case where a trusted third party (TTP) is optimistically available, although we emphasize that the trust put on the TTP is only regarding the fairness, and our protocols preserve the privacy of the exchanged items even against a malicious TTP. We construct an asymptotically optimal (for the complete topology) multi-party fair exchange protocol that requires a constant number of rounds, in comparison to linear, and O(n^2) messages, in comparison to cubic, where n is the number of participating parties. We enable the parties to efficiently exchange any item that can be efficiently put into a verifiable escrow (e.g., signatures on a contract). We show how to apply this protocol on top of any SMPC protocol to achieve a fairness guarantee with very little overhead, especially if the SMPC protocol works with arithmetic circuits. Our protocol guarantees fairness in its strongest sense: even if all n−1 other participants are malicious and colluding, fairness will hold

    Achieving strategic renewal: the multi-level influences of top and middle managers’ boundary-spanning

    Full text link
    corecore