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Abstract. Multi-party fair exchange (MFE) and fair secure multi-party
computation (fair SMPC) are under-studied fields of research, with prac-
tical importance. We examine MFE scenarios where every participant
has some item, and at the end of the protocol, either every participant
receives every other participant’s item, or no participant receives any-
thing. This is a particularly hard scenario, even though it is directly appli-
cable to protocols such as fair SMPC or multi-party contract
signing. We further generalize our protocol to work for any exchange
topology. We analyze the case where a trusted third party (TTP) is
optimistically available, although we emphasize that the trust put on
the TTP is only regarding the fairness, and our protocols preserve the
privacy of the exchanged items even against a malicious TTP.

We construct an asymptotically optimal (for the complete topology)
multi-party fair exchange protocol that requires a constant number of
rounds, in comparison to linear, and O(n2) messages, in comparison to
cubic, where n is the number of participating parties. We enable the
parties to efficiently exchange any item that can be efficiently put into a
verifiable escrow (e.g., signatures on a contract). We show how to apply
this protocol on top of any SMPC protocol to achieve a fairness guar-
antee with very little overhead, especially if the SMPC protocol works
with arithmetic circuits. Our protocol guarantees fairness in its strongest
sense: even if all n − 1 other participants are malicious and colluding,
fairness will hold.

Keywords: Fair exchange · Optimistic model · Secure and fair compu-
tation · Electronic payments

1 Introduction

An exchange protocol allows two or more parties to exchange items. It is fair
when the exchange guarantees that either all parties receive their desired items
or none of them receives any item. Examples of such exchanges include sign-
ing electronic contracts, certified e-mail delivery, and fair purchase of electronic
goods over the internet. In addition, a fair exchange protocol can be adopted
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by secure two- or multi-party computation protocols [7,10,17,26,29,36,45] to
achieve fairness [30].

Even in two-party fair exchange scenarios, preventing unfairness completely
and efficiently without a trusted third party (TTP) is shown to be impossible
[21,41]. The main reason is that one of the parties will be sending the last message
of the protocol, regardless of how the protocol looks like, and may choose not
to send that message, potentially causing unfairness. In an optimistic protocol,
the TTP is involved in the protocol only when there is a malicious behavior
[3,4]. However, it is important not to give a lot of work to the TTP, since this
can cause a bottleneck. Furthermore, the TTP is required only for fairness, and
should not learn more about the exchange than is required to provide fairness.
In particular, in our protocols, we show that the TTP does not learn
the items that are exchanged.

Fair exchange with two parties have been extensively studied and efficient
solutions [4,9,32–34] have been proposed, but the multi-party case does not have
efficient and general solutions. Multi-party fair exchange (MFE) can be described
based on exchange topologies. For example, a ring topology describes an MFE
scenario where each party receives an item from the previous party in the ring
[5,27,38,38]. A common scenario with the ring topology is a customer who wants
to buy an item offered by a provider: the provider gives the item to the customer,
the customer sends a payment authorization to her bank, the customer’s bank
sends the payment to the provider’s bank, and finally the provider’s bank credits
the provider’s account.

Ring topology cannot be used in scenarios like contract-signing and secure
multi-party computation (SMPC), since in such scenarios the parties want items
from all other parties. In particular, in such settings, we want that either
every participant receives every other participant’s item, or no par-
ticipant receives anything. This corresponds to the contract being signed
only if everyone agrees, or the SMPC output to be revealed only when every
participant receives it. We call this kind of topology a complete topology. We
can think of the parties as nodes in a complete graph and the edges between
parties show the exchange links. The complete topology was researched mostly
in the contract-signing setting [8,24,25], with one exception [3]. Unfortunately,
all these protocols are inefficient compared to ours (see Table 1). Since there was
no an efficient MFE protocol that achieves the complete topology, the fairness
problem in SMPC protocols still could not be completely solved. Existing fair
SMPC solutions either work with inefficient gradual release [23], or require the
use of bitcoins [1,11].

Our Contributions: We suggest a new optimistic multi-party fair exchange
protocol that guarantees fairness in every topology, including the complete topol-
ogy, efficiently.

– Our MFE requires only O(n2) messages and constant number of rounds for
n parties, being much more efficient than the previous works (see Table 1).
These are asymptotically optimal for a complete topology, since each party
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Table 1. Efficiency comparison with previous works. n is the total number of parties, t
is number of dishonest parties, and MPCS means multi-party contract signing protocol.

Solution for Topology
Round

Complexity
Number of
Messages

Broadcast

[25] MPCS Complete O(n2) O(n3) Yes

[8] MPCS Complete O(tn) O(tn2) Yes

[40] MPCS Complete O(n) O(n3) Yes

[39] MPCS Complete O(n) O(n2)� Yes

[3] MFE � Any � O(1) � O(n3) Yes

Ours MFE � Any � O(1) � O(n2) � No �

should send his item to all the other parties, even in an unfair exchange.
Furthermore, our MFE does not necessitate a broadcast.

– Our MFE optimally guarantees fairness (for honest parties) even when n−1
out of n parties are malicious and colluding.

– Our MFE has an easy setup phase, which is employed only once for exchang-
ing multiple sets of items, thus improving efficiency even further for repeated
exchanges among the same set of participants.

– The TTP for fairness in our MFE is in the optimistic model [4]. The TTP
has a very low workload, since the parties only employ efficient discrete-
logarithm-based sigma proofs to show their honesty. More importantly, the
TTP does not learn any exchanged item, so privacy against the TTP is
preserved.

– We show how to employ our MFE protocol for any exchange topology,
with the performance improving as the topology gets sparser.

– We formulate MFE as a secure multi-party computation protocol. We then
prove security and fairness via ideal-real world simulation [30]. To the
best of our knowledge, no multi-party fair exchange protocol was proven as
an SMPC protocol before.

– Based on the definition in [30], we provide an ideal world definition for fair
SMPC, and prove via simulation that our MFE can be employed on top
of any SMPC protocol to obtain a fair SMPC protocol, with the fair-
ness extension leaking nothing about the inputs, and without necessitating
a payment system.

2 Related Works

Multi-party Fair Exchange: Asokan et al. [3] described a generic optimistic
fair exchange with a general topology. The parties are restricted to exchange
exchangeable items, requiring the TTP to be able to replace or revoke the items,
greatly decreasing the applicability of their protocol. In addition, broadcast is
used to send the items, rendering their protocol inefficient.

Ring Topologies: Bao et al. [6] proposed an optimistic multi-party fair exchange
protocol based on the ring topology. In their protocol, one of the participants is



Optimally Efficient MFE and Fair SMPC 333

Table 2. Efficiency comparison with previous works in the ring topology. n is number of
parties. ‘All or None’ represents our fairness definition, where either the whole topology
is satisfied, or no exchange occurs.

Number Messages All or None
TTP-Party
Dependency

TTP Privacy

[6] O(n) No Yes Not Private

[27] O(n2) No Yes Not Private

[38] O(n) No Yes Not Private

Ours O(n2) Yes � No � Private �

the initiator, who starts the first and second phases of the protocol. The initiator
is required to contact the TTP to acknowledge the completion of the first phase
of the protocol. Thus, firstly, this is not a strictly optimistic protocol, secondly,
there is a necessity of trusting the initiator.

Later, Gonzales-Deleito and Markowitch [27] solved the malicious initiator
problem of Bao et al. [6]. But, the problem in their protocol is in the recovery
protocol: when one of the participants contacts the TTP, the TTP has to contact
the previous participant in the ring. This is not preferable because it is not
guaranteed that previous participant will be available. The protocol in [38] have
also the problem in the recovery protocol.

Understanding Fairness: There is an important difference between our under-
standing of fairness, and existing ring-topology protocols’ [6,27,38]. According
to their definition, in the end, there will be no party such that he does not
receive his desired item from the previous party but sends his item to the next
party. It means that there can be some parties who received their desired items
and some other parties who did not receive or send anything. Whereas, accord-
ing to our definition, either the whole topology is satisfied (all the
necessary exchanges are complete), or no exchange takes place.

Complete Topologies: Multi-party contract signing indeed corresponds to a
complete topology. Garay and Mackenzie [24] proposed the first optimistic multi-
party contract signing protocol that requires O(n2) rounds and O(n3) messages.
Because of its inefficiency, Baum-Waidner and Waidner [8] suggested a more effi-
cient protocol, whose complexity depends on the number of dishonest parties,
and if the number of dishonest parties is n − 1, its efficiency is the same as [24].
Mukhamedov and Ryan [40] decreased the round complexity to O(n). Lastly,
Mauw et al. [39] gave the lower bound of O(n2) for the number of messages to
achieve fairness. Their protocol requires O(n2) messages, but the round com-
plexity is not constant. We achieve both lower bounds (O(n2) messages
and constant round) for the first time.

Fair Secure Multi-party Computation: Secure multi-party computation
had an important position in the last decades, but its fairness property did not
receive a lot of attention. One SMPC protocol that achieves fairness is designed
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by Garay et al. [28]. It uses gradual release, which is the drawback of this proto-
col, because each party broadcasts its output gradually in each round. At each
round the number of messages is O(n3) and there are a lot of rounds due to
gradual release.

Another approach is using bitcoin to achieve fairness using a TTP in the opti-
mistic model [1,11]. When one of the parties does not receive the output of the
computation, he receives a bitcoin instead. This fairness approach was used by
Lindell [35] for the two-party computation case, and by Küpçü and Lysyanskaya
[33] and Belenkiy et al. [9] for peer-to-peer systems. However, this approach
is not appropriate for multi-party computation since we do not necessar-
ily know how valuable the output will be before evaluation. Finally,
reputation-based fairness solutions [2] talk about fairness probabilities.

3 Definitions and Preliminaries

3.1 Preliminaries

Threshold Public Key Encryption: In such schemes, encryption is done with
a single public key, generated jointly by n decrypters, but decryption requires at
least k decrypters to cooperate. It consists of the probabilistic polynomial time
(PPT) protocols Key Generation, Verification, Decryption and a PPT algorithm
for Encryption [44]. We describe these via the ElGamal (n, k = n) threshold
encryption scheme we will employ, as follows:

– Key Generation: It generates a list of private keys SK = {x1, ..., xn}, where
xi ∈ Zp, public key PK = (g, h), where g is a generator of a large prime
p-order subgroup of Z∗

q with q prime, together with h = g
∑

xi , and public
verification key V K = {vk1, ..., vkn} = {gx1 , ..., gxn}, where n ≥ 1. Note
that this can be done in a distributed manner [43].

– Encryption: It computes the ciphertext for plaintext m as E = (a, b) =
(gr,mhr) where r ∈ Zp.

– Verification: It is between a verifier and a prover. Verifier, using V K,E, and
the given decryption share of the prover di = grxi , outputs valid if prover
shows that logg vki is equal to loga di. Otherwise, it outputs invalid.

– Decryption: It takes as input n decryption shares {d1, ..., dn}, where di =
grxi , V K, and E. Then, it outputs a message m with the following compu-
tation (in Z

∗
q),

b
∏

di
=

mhr

gr
∑

xi
=

mhr

hr
= m

or ⊥ if the decryption shares are invalid.

Verifiable Encryption: It is an encryption that enables the recipient to verify,
using a public key, that the plaintext satisfies some relation, without perform-
ing any decryption [14,15]. A public non-malleable label can be attached to a
verifiable encryption [44].
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Verifiable Escrow: An escrow is a ciphertext under the public key of the TTP.
A verifiable escrow [4,15] is a verifiable encryption under the public key of the
TTP. We employ ElGamal verifiable encryption scheme [13,20].

Notation. The n parties in the protocol are represented by Pi, where i ∈
{1, ..., n}. Ph is to show the honest parties, and Pc is to show the corrupted
parties controlled by the adversary A.

V Ei and V Si is used to show the verifiable encryption and escrow prepared
by Pi, respectively. The descriptive notation for verifiable encryption and escrow
is V (E, pk; l){(v, ξ) ∈ R}. It denotes the verifiable encryption and escrow for the
ciphertext E whereby ξ –whose relation R with the public value v can be verified–
is encrypted under the public key pk, and labeled by l. For escrows, pk is the
TTP’s public key.

PK(v){(v, ξ) ∈ R} denotes a zero-knowledge proof of knowledge of ξ that
has a relation R with the public value v. All relations R in our protocols have
an honest-verifier zero-knowledge three-move proof of knowledge [18], so can be
implemented very efficiently. z shows the number z in the Figure 1.

3.2 Definitions

Optimistic Fair Secure Multi-Party Computation: A group of parties with
their private inputs wi desire to compute a function φ [8,26]. This computation
is secure when the parties do not learn anything beyond what is revealed by the
output of the computation. It is fair if either all of the parties learn the output in
the end of the computation, or none of them learns the output. For an optimistic
protocol, the TTP is involved only when there is a dispute about fairness between
parties. This is formalized by ideal-real world simulations, defined below.

Ideal World: It consists of an adversary A that corrupts the set Pc of m
parties where m ∈ {1, ..., n − 1}, the set of remaining honest party(s) Ph, and
the universal trusted party U (not the TTP). The ideal protocol is as follows:

1. U receives inputs {wi}{i∈Pc} or the message abort from A, and {wj}{j∈Ph}
from the honest party(s). If the inputs are invalid or A sends the message
abort, then U sends ⊥ to all of the parties and halts.

2. Otherwise U computes φ(w1, ..., wn) = (φ1(w1, ..., wn), ..., φn(w1, ..., wn)).
Let φi = φi(w1, ..., wn) be the ith output. Then he sends {φi}{i∈Pc} to A
and {φj}{j∈Ph} to the corresponding honest party(s).

The outputs of the parties in an ideal execution between the honest party(s) and
A controlling the corrupted parties where U computes φ is denoted
IDEALφ,A(aux)(w1, w2, ...wn, λ), where {wi}1≤i≤n are the respective private
inputs of the parties, aux is an auxiliary input of A, and λ is the security
parameter.

Real World: There is no U for a real protocol π to compute the functionality
φ. There is an adversary A that controls the set Pc of corrupted parties and
a TTP involved in the protocol when there is an unfair behavior. The pair of
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outputs of the honest party(s) Ph and A in the real execution of the protocol
π, possibly employing the TTP, is denoted REALπ,TTP,A(aux)(w1, w2, ...wn, λ),
where w1, w2, ...wn, aux, and λ are like above.

Note that U and TTP are not related to each other. TTP is the part of the
real protocol to solve the fairness problem when it is necessary, but U is not real
(just an ideal entity).

Definition 1 (Fair Secure Multi-Party Computation). Let π be a proba-
bilistic polynomial time (PPT) protocol and let φ be a PPT multi-party function-
ality. We say that π computes φ fairly and securely if for every non-uniform
PPT real world adversary A attacking π, there exists a non-uniform PPT ideal
world simulator S so that for every w1, w2, ..., wn, λ ∈ {0, 1}∗, the ideal and real
world outputs are computationally indistinguishable:

{IDEALφ,S(aux)(w1, w2, ..., wn, λ)} ≡c {REALπ,TTP,A(aux)(w1, w2, ..., wn, λ)}

The standard secure multi-party ideal world definition [37] lets the adversary
A to abort after learning his output but before the honest party(s) learns her
output. Thus, proving protocols secure using the old definition would not meet
the fairness requirements. Therefore, we prove our protocols’ security and fair-
ness under the modified definition above. Canetti [16] gives general definitions
for security for multi-party protocols with the same intuition as the security and
fairness definition above. Further realize that since the TTP T does not exist in
the ideal world, the simulator should also simulate its behavior.

Optimistic Multi-Party Fair Exchange: The participants are P1, P2, ..., Pn.
Each participant Pi has an item fi to exchange, and wants to exchange his own
item fi with the other parties’ items {fj}j �=i, , where i, j ∈ {1, ..., n}. Thus, at
the end, every participant obtains {fi}1≤i≤n in a complete topology, or some
subset of it defined by some other exchange topology.

Multi-Party fair exchange is also a multi-party computation where the func-
tionality φ is defined via its parts φi as below (we exemplify using a complete
topology):

φi(f1, ..., fn) = (f1, f2, ..., fi−1, fi+1, ..., fn)

The actual φi would depend on the topology. For example, for the ring topology,
it would be defined as φi(f1, ..., fn) = fi−1 if i �= 1, φi(f1, ..., fn) = fn if i = 1.
Therefore we can use Definition 1 as the security definition of the multi-party
fair exchange, using the φi representing the desired topology.

Adversarial Model: When there is dispute between the parties, the TTP
resolves the conflict atomically. We assume that the adversary cannot prevent
the honest party(s) from reaching the TTP before the specified time interval.
Secure channels are used to exchange the decryption shares and when contacting
the TTP. The adversary may control up to n−1 out of n parties in the exchange,
and is probabilistic polynomial time (PPT).
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4 Description of the Protocol

Remember that our aim is to create efficient multi-party fair exchange protocols
for every topology. The most important challenges of these kind of protocols are
the following:

– Even if there are n − 1 colluding parties, the protocol has to guarantee the
fairness. Consider a simple protocol for the complete topology: each party
first sends the verifiable escrow of the his/her item to the other parties, and
after all the verifiable escrows are received, each of them sends the (plaintext)
items to each other. If one of the parties comes to the TTP for resolution,
the TTP decrypts the verifiable escrow(s) and stores the contacting party’s
item for the other parties.
Assume now that Pi and Pj are colluding, and Pi receives verifiable escrow of
the honest party Ph. Then Pi contacts the TTP, receives fh via the decryp-
tion of the verifiable escrow of Ph, and gives his item fi to the TTP. At
this moment, if Pi and Pj leave the protocol before Pj sends his verifiable
escrow to Ph, then fairness is violated because Ph never gets the item of Pj ,
whereas, by colluding with Pi, Pj also received fh.
Thus, it is important not to let a party learn some item before all the parties
are guaranteed that they will get all the items. We used this intuition while
designing our protocols. Therefore, we oblige parties to depend on some
input from every party in every phase of the protocol. Hence, even
if there is only one honest party, the dishonest ones have to contact and
provide their correct values to the honest party so that they can continue
with the protocol.

– It is desirable and more applicable to use a semi-honest TTP. Hence, privacy
against the TTP needs to be satisfied. In the protocol above, the privacy
against the TTP is violated since the TTP learns the items of the parties.

– The parties do not receive or send any item to some of the other parties in
some topologies (e.g., in the ring topology, P2 receives an item only from
P1 and sends an item to P3 only). Yet, a multi-party fair exchange protocol
must ensure that either the whole topology is satisfied, or no party obtains
any item. Previous protocols fail in this regard, and allow, for example P2

to receive the item of P1 as long as she sends her item to P3, while it may
be the case that P4 did not receive the item of P3. The main issue here is
that, if a multi-party fair exchange protocol lets the topology to be partially
satisfied, we might as well replace that protocol with multiple executions of
two-party fair exchange protocols. The main goal of MFE is to ensure that
either the whole topology is satisfied, or no exchange happens.

We succeed in overcoming the challenges above with our MFE protocol. We
first describe the protocol for the complete topology for the sake of simplic-
ity. Then, we show how we can use our MFE protocol for other topologies in
Section 5. All zero-knowledge proof of knowledge protocols are executed non-
interactively in the random oracle model [12].
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Fig. 1. Our MFE Protocol. Each (i, j) message pair can be performed in any order or
in parallel within a step.

4.1 Multi-Party Fair Exchange Protocol (MFE)

There is a trusted third party (TTP) that is involved in the protocol when a
dispute happens between the participants about fairness. His public key pk is
known to every participant.

Overview: The protocol has three phases. In the first phase, parties jointly gen-
erate a public key for the threshold encryption scheme using their private shares.
This phase needs to be done only once among the same set of participants. In
the second phase, they send to each other the verifiable encryptions of the items
that they want to exchange. If anything goes wrong up till here, the protocol
is aborted. In the final phase, they exchange decryption shares for each item.
If something goes wrong during the final phase, resolutions with the TTP are
performed. The details are below (see also Figure 1).

Phase 1 ( 1 and 2 in Figure 1): All participants agree on the prime p-order
subgroup of Z∗

q , where q is a large prime, and a generator g of this subgroup.
Then each Pi does the following [43]:

– Pi randomly selects his share xi from Zp and computes the verification key
hi = gxi . Then he commits to hi and sends the commitment Ci to other
parties [43].

– After receiving all commitments from the other parties, Pi opens Ci and
obtains all other parties’ hj .
Note that this must be done after exchanging all the commitments, since
otherwise we cannot claim independence of the shares, and then the threshold
encryption scheme’s security argument would fail. But with the two steps
above, the security proof for threshold encryption holds here.

– After receiving all hi values successfully, Pi computes the threshold encryp-
tion’s public key

h =
∏

i

hi =
∏

i

gxi = g
∑

i xi = gx.
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Phase 1 is executed only once. Afterward, the same set of parties can exchange
as many items as they want by performing only Phase 2 and Phase 3.

Phase 2 ( 3 in Figure 1): Firstly, parties agree on two time parameters t1 and
t2, and identification id of the protocol. (Time parameters can also be agreed in
Phase 1.) Each participant Pi does the following:

– Pi sends a verifiable encryption of his item fi as

V Ei = V ((gri , fih
ri), h; ∅){(v, fi) ∈ Ritem}

where ri is randomly selected from Zp. For the notation simplicity, we denote
(ai, bi) = (gri , fih

ri). V Ei includes the encryption of the item fi with public
key h and it can be verified that the encrypted item fi and the public value
vi has the relation Ritem. Shortly, Pi proves he encrypts desired item. (e.g.,
if fi is a signature on a contract, then vi contains the signature verification
key of Pi together with the contract, and Ritem is the relation that fi is a
valid signature with respect to vi.)
Note that without knowing n decryption shares, no party can decrypt any
V Ej and learn the items. Thus, if anything goes wrong up to this point, the
parties can locally abort the protocol. After this point, they need to obtain
all the decryption shares. This is done in the following phase.

Phase 3 ( 4 and 5 in Figure 1): No party begins this phase without com-
pleting Phase 2 and receiving all verifiable encryptions V Ej correctly.

– Pi sends to other parties a verifiable escrow V Si that includes the decryption
shares for each verifiable encryption V Ej . V Si is computed as

V Si = V (Ei, pk; t1, t2, id, Pi){(hi, {axi

k }1≤k≤n) ∈ Rshare}
where Ei is the encryption of axi

1 , axi
2 , ..., axi

n with the TTP’s public key pk.
The relation Rshare is:

logg hi = logak
axi

k for each k. (1)

Simply, the verifiable escrow V Si includes the encryption of the decryption
shares of Pi that will be used to decrypt the encrypted items of all parties.
It can be verified that it has the correct decryption shares. In addition, only
the TTP can open it. The label t1, t2, id, Pi contains the public parameters
of the protocol, and Pi is just a name that the participant chooses. Here, we
assume that each party knows the other parties’ names.

Remark: The name Pi is necessary to show the V Si belongs him. It is not
beneficial to put a wrong name in a verifiable escrow’s label, since a cor-
rupted party can convince TTP to decrypt V Si by showing Pi is dishonest.
The other labels id, t1, t2 are to show the protocol parameters to the TTP.
Exchange identifier id is necessary to prevent corrupted parties to induce
TTP to decrypt V Sj for another exchange. Consider that some exchange
protocol ended unsuccessfully, which means nobody received any item. The
corrupted party can go to the TTP as if V Sj is the verifiable escrow of the
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next protocol, and have it decrypted, if we were not using exchange identi-
fiers. We will see in our resolution protocols that cheating in the labels do
not provide any advantage to an adversary. Furthermore, the party
names can be random and distinct in each exchange, as long as the parties
know each others’ names, and so it does not violate the privacy of the parties.

– Pi waits for V Sj from each Pj . If anything is wrong with some V Sj (e.g.,
verification fails or the label is not as expected), or Pi does not receive the
verifiable escrow from at least one participant, he executes Resolve 1 before
t1. Otherwise, Pi continues with the next step.

– Pi sends his decryption shares (axi
1 , axi

2 , ..., axi
n ) to each Pj . In addition, he

executes the zero-knowledge proof of knowledge showing that these are the
correct decryption shares

PK(hi, {ak}k∈N ){(hi, {axi

k }1≤k≤n) ∈ Rshare}. (2)

– Pi waits for (axj

1 , a
xj

2 , ..., a
xj
n ) from each Pj , together with the same proof

that he does. If one of the values that he receives is not as expected or if he
does not receive them from some Pj , he performs Resolve 2 protocol with
the TTP, before t2 and after t1. Otherwise, Pi continues with the next step.

– After receiving all the necessary values, Pi can decrypt each V Ei and get all
the items. The decryption for item fj is as below:

bj/
∏

k

axk
j = fjh

rj/grj

∑
k xk = fjh

rj/(g
∑

k xk)rj = fjh
rj/hrj = fj

Resolve 1. The goal of Resolve 1 is to record the corrupted parties that did not
send their verifiable escrow in 4 . Resolve 1 needs to be done before t1. Parties
do not learn any decryption shares here. They can just complain about other
parties to the TTP. The TTP creates a fresh complaintList for the protocol with
parameters id, t1, t2. The complaintList contains the names of pairs of parties
having a dispute because of the missing V S. The complainant is the party that
complains, whose name is saved as the first of the pair, and the complainee is
saved as the second of the pair. The TTP saves also complainee’s verification key
given by the complainant; in the case that the complainee contacts the TTP, he
will be able to prove that he is the complainee. See Algorithm 1.

Algorithm 1. Resolve 1

Pi sends id, t1, t2, Pj , hj to the TTP where Pj

is the party that did not send V Sj to Pi. The
TTP does the following:
if currenttime > t1 then

send msg “Abort Resolve 1”
else

complaintList = GetComplaintList(id, t1, t2)

if complaintList == NULL then

complaintList = EmptyList(id, t1, t2)
// initialize empty list
solvedList = EmptyList(id, t1, t2) //
will be used in Resolve 2

end if
complaintList.add(Pi, (Pj , hj))
send msg “Come after t1 for Resolve 2”

end if
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Resolve 2. Resolve 2 is the resolution protocol where the parties come to the
TTP to ask him to decrypt verifiable escrows and the TTP solves the complaint
problems recorded in Resolve 1. The TTP does not decrypt any verifiable escrow
until the complaintList is empty.

The party Pi, who comes for Resolve 2 between t1 and t2, gives all veri-
fiable escrows that he has already received from the other parties and his own
verifiable escrow to the TTP. The TTP uses these verifiable escrows to save the
decryption shares required to solve the complaints in the complaintList. If the
complaintList is not empty in the end, Pi comes after t2 for Resolve 3. Other-
wise, Pi can perform Resolve 3 immediately and get all the decryption shares
that he requests.

Algorithm 2. Resolve 2

Pi gives M, which is the set of verifiable
escrows that Pi has. The TTP does the fol-
lowing:
complaintList = GetComplaintList(id, t1, t2)
for all V Sj in M do

if (∗, (Pj , hj)) ∈ complaintList AND
CheckCorrectness(V Sj , hj) is true then

sharesj = Decrypt(sk, V Sj)
solvedList.Save(Pj , sharesj)

complaintList.Remove((∗, (Pj , hj)))
end if

end for
if complaintList is empty then

send msg “Do Resolve 3”
else

send msg “Come after t2 for Resolve 3”
end if

CheckCorrectness(V Sj , hj) returns true if the TTP can verify the relation in equation (1) using

verifiable escrow V Sj and hj . Otherwise it returns false.

Resolve 3. If the complaintList still has parties, even after t2, the TTP answers
each resolving party saying that the protocol is aborted, which means nobody
is able to learn any item. If the complaintList is empty, the TTP decrypts
any verifiable escrow that is given to him. Besides, if the complainants in the
solvedList come, he gives the stored decryption shares. See Algorithm 3.

Algorithm 3. Resolve 3

Pi gives C, which is the set of parties that

did not perform step 4 or 5 with Pi, and
V, which is the set of verifiable escrows that
belongs to parties in C who performed step

4 . The TTP does the following:
complaintList = GetComplaintList(id, t1, t2)

if complaintList.isEmpty() then
for all Pj in C do

if V Sj ∈ V then

send Decrypt(sk, V Sj)
else

send solvedList.GetShares(Pj)
end if

end for
else if currenttime > t2 then

send msg “Protocol is aborted”
else

send msg “Try after t2”
end if
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4.2 Security

Theorem 1. The MFE protocol above is fair according to Definition 1, assum-
ing that ElGamal threshold encryption scheme is a secure threshold encryption
scheme, the associated verifiable escrow scheme is secure, all commitments are
hiding and binding, and the discrete logarithm problem is hard (so that the proofs
are sound and zero-knowledge).

Proof Sketch: The proof of Theorem 1 is in the full version of this paper [31].
Assume the worst-case that adversary A corrupts n − 1 parties. The simulator
S simulates the honest party in the real world and the corrupted parties in the
ideal world. S also acts as the TTP in the protocol if any resolution protocol
occurs, so S publishes a public key pk as the TTP, and knows the corresponding
secret key. Let’s assume that S simulates the honest party P1 without loss of
generality in real world.

S behaves the same as in the real protocol for Phase 1. Then in Phase 2, he
encrypts random item f̃1 since he does not know real f1 and sends the verifiable
encryption ˜V E1 to other parties. While he receives other parties’ V Es, he learns
the other parties’ items behaving as the extractor of verifiable encryption.

He behaves as in Phase 3. Additionally he learns decryption shares of the
parties that send verifiable escrow using the extractor.

If he receives all verifiable escrows of the other parties, it means it is guaran-
teed that the real honest party would obtain her desired items, because S in the
real world is now able to learn all the decryption shares from the corrupted par-
ties via resolutions. So he sends the items of the other parties to U and receives
f1. Then he calculates Equation 3 to find the appropriate decryption share d1
such that the other parties can get the item f1 from a1, b1 using d1. The other
decryption shares are calculated as in the real protocol.

d1 =
b1

f1a
x2
i ...axn

i

(3)

Otherwise S simulates the resolve protocols and does not send his decryption
shares as in real protocol. In the end of t2, if complaintList is empty, S sends
items of corrupted parties to U and receives f1. Then he calculates d1 from
Equation 3. In this point, when some parties come for Resolve 3, S can give
every share that they want. If complaintList is not empty in the end of t2, S
sends message abort to U .

5 All Topologies for MFE

In this section, we adapt our MFE protocol to every topology. Our fairness
definition remains the same: either the whole topology is satisfied, or no party
learns any item. As an example, consider the ring topology as in Figure 3. Parties
want an item from only the previous party. For example, P2 only wants P1’s
item f1. However, P2 should contact all other parties because of our all-or-none
fairness condition. Besides, we are not limited with a topology that follows a
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specific pattern such as the number of parties and items being necessarily equal.
For example, it is possible to provide fairness in the topology in Figure 5 even
though P2, P3, and P4 do not have exchange item with each other.

f1 f2 f3 f4
P1 �
P2 �
P3 �
P4 �

Fig. 2. Desired
items by each
parties in
matrix form
in the ring
topology

Fig. 3. Graph
representation of
the ring topology

f1 f2 f3 f4 f5
P1 � � � �
P2 �
P3 �
P4 �

Fig. 4. Matrix
representation of a
topology

Fig. 5. Graph repre-
sentation of a topol-
ogy in Figure 4

Consider some arbitrary topology described by the matrix in Figure 6. If a
party desires an item from another party, he should have all the shares of the item
as shown in Figure 7. In general, we can say that if a party Pi wants the item ft

he should receive {a
xj

t }{1≤j≤n} from all the parties {Pj}{1≤j≤n}. Therefore, our
MFE can be applied to any topology with the same fairness condition, which is
all parties will receive all their desired items or none of them receives
anything in the end of the protocol.

f1 f2 f3 f4 f5
P1 � �
P2 � � �
P3 � �
P4 � � � �

Fig. 6. Each party wants the marked
items corresponding to his/her row. Pi

has fi, except P4 has both f4 and f5.

f1 f2 f3 f4 f5
P1 {axi

2 } {axi
3 } {axi

5 }
P2 {axi

1 } {axi
4 } {axi

5 }
P3 {axi

1 } {axi
3 }

P4 {axi
1 } {axi

2 } {axi
3 } {axi

5 }

Fig. 7. Necessary shares for each party
to get the desired items that are
shown in Figure 6. Sets are over i ∈
{1, 2, ..., 5}

Our strong fairness condition requires that all parties have to depend each
other. Even though Pi does not want an item fj from Pj , getting his desired
item has to also depend on Pj . Therefore we cannot decrease number of messages
even in a simpler (e.g., ring) topology.

On the other hand, the size of the verifiable escrow, meaning that the number
of shares in the verifiable escrow, decreases in topologies other than the complete
one. If we represent the topology in a matrix form as in Figure 6, each party Pi
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has to add the number of � many shares corresponding to the row of the party
Pj to the verifiable escrow that is sent to Pj . We can conclude that the total size
of the verifiable escrows that a party sends is O(#�) where � is as in Figure 6.

6 Efficient Fair Secure Multi-Party Computation

In this section, we show how to adapt the MFE protocol to any secure multi-
party computation (SMPC) protocol [7,10,17,26,46] to achieve fairness.

Assume n participants want to compute a function φ(w1, ..., wn) =
(φ1(w1, ..., wn), ..., φn(w1, ..., wn)), where wi is the input and φi = φi(w1, ..., wn)
is the output of party Pi.

– Pi randomly chooses a share xi ∈ Zp. Then Pi gives his share and wi to
an SMPC protocol that outputs the computation of the functionality ψ
where ψi(z1, z2, ..., zn) = (Ei(φi(w1, ..., wn)), {gxj}1≤j≤n) is the output to,
and zi = (wi, xi) is the input of Pi. This corresponds to a circuit encrypting
the outputs of the original function φ using the shares provided as input, and
also outputting the verification shares of all parties to everyone. Encryption
Ei is done with the key h = g

∑n
j=1 xj as follows:

Ei(φi(w1, ..., wn)) = (gri , φih
ri)

where ri ∈ Zp are random numbers chosen by the circuit (or they can also
be inputs to the circuit), similar to the original MFE protocol.
It is expected that everyone learns the output of ψ before a fair exchange
occurs. If some party did not receive his output at the end of the SMPC
protocol, then they do not proceed with the fair exchange, and hence no
party will be able to decrypt and learn their output.

– If everyone received their output from the SMPC protocol, then they execute
the Phase 3 of the MFE protocol above, using gxi values obtained from
the output of ψ as verification shares, and xi values as their secret shares.
Furthermore, the ai, bi values are obtained from Ei.
Note that each function output is encrypted with all the shares. But, for
party Pi, she need not provide her decryption share for fi to any other party.
Furthermore, instead of providing n decryption shares to each other party as
in a complete topology, she needs to provide only one decryption share, axi

j ,
to each Pj . Therefore, the Phase 3 of MFE here is a more efficient version.
Indeed, the verifiable escrows, the decryption shares, and their proofs each
need to be only on a single value instead of n values.
Phases 1 and 2 of the fair exchange protocol have already been done during

the modified SMPC protocol, since the parties get the encryption of the output
that is encrypted by their shares. Since the SMPC protocol is secure, it is guar-
anteed to output the correct ciphertexts, and we do not need further verification.
We also do not need to commit to xi values, since the SMPC protocol ensures
independence of inputs as well. So, the parties only need to perform Phase 3.

In the end of the exchange, each party can decrypt only their own
output, because they do not disclose their own decryption shares. Indeed,
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if a symmetric functionality is desired for SMPC, ψ(z1, z2, ..., zn) =
{Ei(φi(w1, ..., wn)), gxi}1≤i≤n may be computed, and since Pi does not give the
decryption share of fi to anyone else, each party will still only be able to decrypt
their own output. Hence, a symmetric functionality SMPC protocol may
be employed to compute an asymmetric functionality fairly using our
modification . Note also that we view the SMPC protocol as black box.

Our overhead over performing unfair SMPC is minimal. Even though the
input and output sizes are extended additionally by O(n) values and the circuit
is extended to perform encryptions, these are minimal requirements, especially
if the underlying SMPC protocol works over arithmetic circuits (e.g., [7,46]). In
such a case, performing ElGamal and creating verification values gxi are very
easy. Afterward, we only add two rounds of interaction for the sake of fairness
(i.e., Phase 3 of MFE, with smaller messages). Moreover, all the benefits of our
MFE protocol apply here as well.

Theorem 2. The SMPC protocol above is fair and secure according to Defi-
nition 1 for the functionality φ, assuming that ElGamal threshold encryption
scheme is a secure, the discrete logarithm assumption holds, and the underlying
SMPC protocol that computes functionality ψ is secure.

Proof Sketch: The proof of Theorem 2 is in the full version of this paper
[31]. Assume that A corrupts n − 1 parties, which is the worst possible case.
The simulator S simulates the honest party in the real world and the corrupted
parties in the ideal world. S uses random input and acts as the simulator of
underlying SMPC protocol. The only difference between simulator of SMPC
and S is that S does not send inputs of the corrupted parties to U directly
after learning inputs of them because he needs to be sure that all parties will
receive output before sending inputs to U . The output of the simulated SMPC
protocol is encryptions of random outputs. Because of the security of ElGamal
encryption, these encryptions are indistinguishable from real ones.

In the end, S behaves as the simulator of MFE protocol for Phase 3 to
simulate the exchange. If it is guarantee all parties learn outputs, S sends inputs
of Pc’s to U and receives the output of Ph. Then he calculates each share di as
in Equation 3. Otherwise he sends the message abort to U .

Table 3 compares our fair SMPC solution. Our advantage is in terms of
efficiency, having no requirement for an external payment mechanism,
and proving security and fairness together via ideal/real simulation.

7 Performance and Privacy Analysis

MFE: Each party Pi in MFE prepares one verifiable encryption and one ver-
ifiable escrow, and sends them to n − 1 parties. The verification of them are
efficient because the relation they show can be proven using discrete-logarithm-
based honest-verifier zero-knowledge three-move proofs of knowledge [18]. In the
end, Pi sends a message including decryption shares to n− 1 parties, again with
an efficient proof of knowledge. So, for each party Pi, the number of messages
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Table 3. Comparison of our fair SMPC solution with previous works. NFS indicates
simulation proof given but not for fairness, FS indicates full simulation proof including
fairness, and λ is the security parameter.

Solutions Technique TTP Number of Rounds Proof Technique

[23] Gradual Release No O(λ) NFS

[11] Bitcoin Yes Constant � NFS

[1] Bitcoin Yes Constant � NFS

Ours MFE Yes Constant � FS �

that he sends is O(n). Since there are n parties, the total message complexity
is O(n2). Note that there is no requirement to have these messages broadcast;
just ensuring all previous step’s messages are received before moving further is
enough for security. Table 1 shows the comparison to the previous works, MFE
is much more efficient, obtaining optimal asymptotic efficiency.

When there is a malicious party or a party suffering from network failure,
MFE protocol ends at the latest, immediately after t2. In the worst case, n
parties contact the TTP, so it is important to reduce his workload. TTP’s duties
include checking some list from his records, verifying efficient zero-knowledge
proofs of knowledge from some number of parties (depending on the size of the
complaintList), and decrypting verifiable escrows. These actions are all efficient.

Moreover, the privacy against the TTP is preserved. He just learns
some decryption shares, but he cannot decrypt the encryption of exchanged
items, since he never gets the encrypted items.

We used ElGamal threshold encryption for presentation simplicity. Instead,
any threshold encryption scheme such as the Pailler cryptosystem [42], Franklin
and Haber’s cryptosystem [22], or Damgard-Jurik cryptosystem [19] can be used.

Finally, our MFE protocol achieves the intuitive fairness definition of ‘either
the whole topology is satisfied, or no item is exchanged’ for any topology. Such a
strong fairness definition necessitates that the exchanges depend on all parties,
necessitating quadratic number of messages.

Fair MPC: The overhead of our fairness solution on top of an existing
unfair SMPC protocol is increased input/output size, and additional computa-
tion of encryptions and verification shares. If an arithmetic circuit is used in the
underlying SMPC protocol [7,17,46], then there are only O(n) additional expo-
nentiations required, which does not extend circuit size a lot. If boolean circuits
are used, the size of the circuit increases more than arithmetic circuits would
have, but it is still tolerable considering in comparison to the related work.

As seen in Table 3, [23] uses gradual release for fairness. However, this brings
many extra rounds and messages to the protocol. Each round each party releases
his item by broadcasting it. Recent, bitcoin-based approaches [1,11] also require
broadcasting in the bitcoin network, which increases message complexity. Our
only overhead is a constant number of rounds, and O(n2) messages. Remember
again that these are asymptotically optimal, since fair SMPC necessitates a
complete topology.
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