1,969 research outputs found

    PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling.

    Get PDF
    Over the past two decades, a complex nuclear transcriptional machinery controlling mitochondrial biogenesis and function has been described. Central to this network are the PGC-1 family coactivators, characterised as master regulators of mitochondrial biogenesis. Recent literature has identified a broader role for PGC-1 coactivators in both cell death and cellular adaptation under conditions of stress, here reviewed in the context of the pathology associated with cancer, neurodegeneration and cardiovascular disease. Moreover, we propose that these studies also imply a novel conceptual framework on the general role of mitochondrial dysfunction in disease. It is now well established that the complex nuclear transcriptional control of mitochondrial biogenesis allows for adaptation of mitochondrial mass and function to environmental conditions. On the other hand, it has also been suggested that mitochondria alter their function according to prevailing cellular energetic requirements and thus function as sensors that generate signals to adjust fundamental cellular processes through a retrograde mitochondria-nucleus signalling pathway. Therefore, altered mitochondrial function can affect cell fate not only directly by modifying cellular energy levels or redox state, but also indirectly, by altering nuclear transcriptional patterns. The current literature on such retrograde signalling in both yeast and mammalian cells is thus reviewed, with an outlook on its potential contribution to disease through the regulation of PGC-1 family coactivators. We propose that further investigation of these pathways will lead to the identification of novel pharmacological targets and treatment strategies to combat disease

    3D Printed Tablets (Printlets) with Braille and Moon Patterns for Visually Impaired Patients

    Get PDF
    Visual impairment and blindness affects 285 million people worldwide, resulting in a high public health burden. This study reports, for the first time, the use of three-dimensional (3D) printing to create orally disintegrating printlets (ODPs) suited for patients with visual impairment. Printlets were designed with Braille and Moon patterns on their surface, enabling patients to identify medications when taken out of their original packaging. Printlets with different shapes were fabricated to offer additional information, such as the medication indication or its dosing regimen. Despite the presence of the patterns, the printlets retained their original mechanical properties and dissolution characteristics, wherein all the printlets disintegrated within ~5 s, avoiding the need for water and facilitating self-administration of medications. Moreover, the readability of the printlets was verified by a blind person. Overall, this novel and practical approach should reduce medication errors and improve medication adherence in patients with visual impairment

    Quantification of P-Glycoprotein in the Gastrointestinal Tract of Humans and Rodents: Methodology, Gut Region, Sex, and Species Matter

    Get PDF
    Intestinal efflux transporters affect the gastrointestinal processing of many drugs but further data on their intestinal expression levels are required. Relative mRNA expression and relative and absolute protein expression data of transporters are commonly measured by real-time polymerase chain reaction (RT-PCR), Western blot and mass spectrometry-based targeted proteomics techniques. All of these methods, however, have their own strengths and limitations, and therefore, validation for optimized quantification methods is needed. As such, the identification of the most appropriate technique is necessary to effectively translate preclinical findings to first-in-human trials. In this study, the mRNA expression and protein levels of the efflux transporter P-glycoprotein (P-gp) in jejunal and ileal epithelia of 30 male and female human subjects, and the duodenal, jejunal, ileal and colonic tissues in 48 Wistar rats were quantified using RT-PCR, Western blot and liquid chromatography-tandem mass spectrometry (LC-MS/MS). A similar sex difference was observed in the expression of small intestinal P-gp in humans and Wistar rats where P-gp was higher in males than females with an increasing trend from the proximal to the distal parts in both species. A strong positive linear correlation was determined between the Western blot data and LC-MS/MS data in the small intestine of humans (R^{2} = 0.85). Conflicting results, however, were shown in rat small intestinal and colonic P-gp expression between the techniques (R^{2} = 0.29 and 0.05, respectively). In RT-PCR and Western blot, an internal reference protein is experimentally required; here, beta-actin was used which is innately variable along the intestinal tract. Quantification via LC-MS/MS can provide data on P-gp expression without the need for an internal reference protein and consequently, can give higher confidence on the expression levels of P-gp along the intestinal tract. Overall, these findings highlight similar trends between the species and suggest that the Wistar rat is an appropriate preclinical animal model to predict the oral drug absorption of P-gp substrates in the human small intestine

    Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Five DNA regions, namely, <it>rbcL</it>, <it>matK</it>, ITS, ITS2, and <it>psbA-trnH</it>, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported.</p> <p>Results</p> <p>The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera.</p> <p>Conclusions</p> <p>ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels.</p

    The Road to Quantum Computational Supremacy

    Full text link
    We present an idiosyncratic view of the race for quantum computational supremacy. Google's approach and IBM challenge are examined. An unexpected side-effect of the race is the significant progress in designing fast classical algorithms. Quantum supremacy, if achieved, won't make classical computing obsolete.Comment: 15 pages, 1 figur

    Unusual Location of the Geotail Magnetopause Near Lunar Orbit: A Case Study

    Get PDF
    The Earth's magnetopause is highly variable in location and shape and is modulated by solar wind conditions. On 8 March 2012, the ARTEMIS probes were located near the tail current sheet when an interplanetary shock arrived under northward interplanetary magnetic field conditions and recorded an abrupt tail compression at ∼(‐60, 0, ‐5) RE in Geocentric Solar Ecliptic coordinate in the deep magnetotail. Approximately 10 minutes later, the probes crossed the magnetopause many times within an hour after the oblique interplanetary shock passed by. The solar wind velocity vector downstream from the shock was not directed along the Sun‐Earth line but had a significant Y component. We propose that the compressed tail was pushed aside by the appreciable solar wind flow in the Y direction. Using a virtual spacecraft in a global magnetohydrodynamic (MHD) simulation, we reproduce the sequence of magnetopause crossings in the X‐Y plane observed by ARTEMIS under oblique shock conditions, demonstrating that the compressed magnetopause is sharply deflected at lunar distances in response to the shock and solar wind VY effects. The results from two different global MHD simulations show that the shocked magnetotail at lunar distances is mainly controlled by the solar wind direction with a timescale of about a quarter hour, which appears to be consistent with the windsock effect. The results also provide some references for investigating interactions between the solar wind/magnetosheath and lunar nearside surface during full moon time intervals, which should not happen in general

    Towards a large-scale quantum simulator on diamond surface at room temperature

    Full text link
    Strongly-correlated quantum many-body systems exhibits a variety of exotic phases with long-range quantum correlations, such as spin liquids and supersolids. Despite the rapid increase in computational power of modern computers, the numerical simulation of these complex systems becomes intractable even for a few dozens of particles. Feynman's idea of quantum simulators offers an innovative way to bypass this computational barrier. However, the proposed realizations of such devices either require very low temperatures (ultracold gases in optical lattices, trapped ions, superconducting devices) and considerable technological effort, or are extremely hard to scale in practice (NMR, linear optics). In this work, we propose a new architecture for a scalable quantum simulator that can operate at room temperature. It consists of strongly-interacting nuclear spins attached to the diamond surface by its direct chemical treatment, or by means of a functionalized graphene sheet. The initialization, control and read-out of this quantum simulator can be accomplished with nitrogen-vacancy centers implanted in diamond. The system can be engineered to simulate a wide variety of interesting strongly-correlated models with long-range dipole-dipole interactions. Due to the superior coherence time of nuclear spins and nitrogen-vacancy centers in diamond, our proposal offers new opportunities towards large-scale quantum simulation at room temperatures

    Spontaneous violation of chiral symmetry in QCD vacuum is the origin of baryon masses and determines baryon magnetic moments and their other static properties

    Full text link
    A short review is presented of the spontaneous violation of chiral symmetry in QCD vacuum. It is demonstrated, that this phenomenon is the origin of baryon masses in QCD. The value of nucleon mass is calculated as well as the masses of hyperons and some baryonic resonances and expressed mainly through the values of quark condensates -- , q=u,d,s, ~q=u,d,s -- the vacuum expectation values (v.e.v.) of quark field. The concept of vacuum expectation values induced by external fields is introduced. It is demonstrated that such v.e.v. induced by static electromagnetic field results in quark condensate magnetic susceptibility, which plays the main role in determination of baryon magnetic moments. The magnetic moments of proton, neutron and hyperons are calculated. The results of calculation of baryon octet β\beta-decay constants are also presented.Comment: 13 pades, 5 figures. Dedicated to 85-birthday of acad. S.T.Belyaev. To be published in Phys.At.Nucl. Few references are correcte

    How do you say ‘hello’? Personality impressions from brief novel voices

    Get PDF
    On hearing a novel voice, listeners readily form personality impressions of that speaker. Accurate or not, these impressions are known to affect subsequent interactions; yet the underlying psychological and acoustical bases remain poorly understood. Furthermore, hitherto studies have focussed on extended speech as opposed to analysing the instantaneous impressions we obtain from first experience. In this paper, through a mass online rating experiment, 320 participants rated 64 sub-second vocal utterances of the word ‘hello’ on one of 10 personality traits. We show that: (1) personality judgements of brief utterances from unfamiliar speakers are consistent across listeners; (2) a two-dimensional ‘social voice space’ with axes mapping Valence (Trust, Likeability) and Dominance, each driven by differing combinations of vocal acoustics, adequately summarises ratings in both male and female voices; and (3) a positive combination of Valence and Dominance results in increased perceived male vocal Attractiveness, whereas perceived female vocal Attractiveness is largely controlled by increasing Valence. Results are discussed in relation to the rapid evaluation of personality and, in turn, the intent of others, as being driven by survival mechanisms via approach or avoidance behaviours. These findings provide empirical bases for predicting personality impressions from acoustical analyses of short utterances and for generating desired personality impressions in artificial voices
    corecore