34 research outputs found

    Susceptibility of adult cat fleas (Siphonaptera: Pulicidae) to insecticides and status of insecticide resistance mutations at the Rdl and knockdown resistance loci

    Get PDF
    This is an Open Access article. © 2015 The Author(s). Published by Springer Berlin Heidelberg.The susceptibility of 12 field-collected isolates and 4 laboratory strains of cat fleas, Ctenocephalides felis was determined by topical application of some of the insecticides used as on-animal therapies to control them. In the tested field-collected flea isolates the LD50 values for fipronil and imidacloprid ranged from 0.09 to 0.35 ng/flea and 0.02 to 0.19 ng/flea, respectively, and were consistent with baseline figures published previously. The extent of variation in response to four pyrethroid insecticides differed between compounds with the LD50 values for deltamethrin ranging from 2.3 to 28.2 ng/flea, etofenprox ranging from 26.7 to 86.7 ng/flea, permethrin ranging from 17.5 to 85.6 ng/flea, and d-phenothrin ranging from 14.5 to 130 ng/flea. A comparison with earlier data for permethrin and deltamethrin implied a level of pyrethroid resistance in all isolates and strains. LD50 values for tetrachlorvinphos ranged from 20.0 to 420.0 ng/flea. The rdl mutation (conferring target-site resistance to cyclodiene insecticides) was present in most field-collected and laboratory strains, but had no discernible effect on responses to fipronil, which acts on the same receptor protein as cyclodienes. The kdr and skdr mutations conferring target-site resistance to pyrethroids but segregated in opposition to one another, precluding the formation of genotypes homozygous for both mutations.Peer reviewedFinal Published versio

    EBP1 Is a Novel E2F Target Gene Regulated by Transforming Growth Factor-β

    Get PDF
    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context
    corecore