3 research outputs found

    The Statistics of Bulk Segregant Analysis Using Next Generation Sequencing

    Get PDF
    We describe a statistical framework for QTL mapping using bulk segregant analysis (BSA) based on high throughput, short-read sequencing. Our proposed approach is based on a smoothed version of the standard statistic, and takes into account variation in allele frequency estimates due to sampling of segregants to form bulks as well as variation introduced during the sequencing of bulks. Using simulation, we explore the impact of key experimental variables such as bulk size and sequencing coverage on the ability to detect QTLs. Counterintuitively, we find that relatively large bulks maximize the power to detect QTLs even though this implies weaker selection and less extreme allele frequency differences. Our simulation studies suggest that with large bulks and sufficient sequencing depth, the methods we propose can be used to detect even weak effect QTLs and we demonstrate the utility of this framework by application to a BSA experiment in the budding yeast Saccharomyces cerevisiae

    Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis.

    No full text
    The genetic architectures of common, complex diseases are largely uncharacterized. We modeled the genetic architecture underlying genome-wide association study (GWAS) data for rheumatoid arthritis and developed a new method using polygenic risk-score analyses to infer the total liability-scale variance explained by associated GWAS SNPs. Using this method, we estimated that, together, thousands of SNPs from rheumatoid arthritis GWAS explain an additional 20\% of disease risk (excluding known associated loci). We further tested this method on datasets for three additional diseases and obtained comparable estimates for celiac disease (43\% excluding the major histocompatibility complex), myocardial infarction and coronary artery disease (48\%) and type 2 diabetes (49\%). Our results are consistent with simulated genetic models in which hundreds of associated loci harbor common causal variants and a smaller number of loci harbor multiple rare causal variants. These analyses suggest that GWAS will continue to be highly productive for the discovery of additional susceptibility loci for common diseases

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    No full text
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired \u3b2-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology.RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of 3c2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates.RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 7 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 7 10(-4)), improved \u3b2-cell function (P = 1.1 7 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 7 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets.CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
    corecore