13 research outputs found

    Copper-mediated late-stage radiofluorination: five years of impact on preclinical and clinical PET imaging

    No full text

    Use of 55 PET radiotracers under approval of a Radioactive Drug Research Committee (RDRC)

    No full text

    Clinical validity of increased cortical uptake of [F-18]flortaucipir on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase biomarker development framework

    No full text
    Purpose In 2017, the Geneva Alzheimer's disease (AD) Biomarker Roadmap initiative adapted the framework of the systematic validation of oncological diagnostic biomarkers to AD biomarkers, with the aim to accelerate their development and implementation in clinical practice. With this work, we assess the maturity of [F-18]flortaucipir PET and define its research priorities. Methods The level of maturity of [F-18]flortaucipir was assessed based on the AD Biomarker Roadmap. The framework assesses analytical validity (phases 1-2), clinical validity (phases 3-4), and clinical utility (phase 5). Results The main aims of phases 1 (rationale for use) and 2 (discriminative ability) have been achieved. [F-18]Flortaucipir binds with high affinity to paired helical filaments of tau and has favorable kinetic properties and excellent discriminative accuracy for AD. The majority of secondary aims of phase 2 were fully achieved. Multiple studies showed high correlations between ante-mortem [F-18]flortaucipir PET and post-mortem tau (as assessed by histopathology), and also the effects of covariates on tracer binding are well studied. The aims of phase 3 (early detection ability) were only partially or preliminarily achieved, and the aims of phases 4 and 5 were not achieved. Conclusion Current literature provides partial evidence for clinical utility of [F-18]flortaucipir PET. The aims for phases 1 and 2 were mostly achieved. Phase 3 studies are currently ongoing. Future studies including representative MCI populations and a focus on healthcare outcomes are required to establish full maturity of phases 4 and 5

    18F-labelling innovations and their potential for clinical application

    No full text
    An impressive variety of new methodologies for the preparation of 18F-labelled tracers and ligands has appeared over the last decade. Most strategies of the newly developed radiofluorination methods predominantly aim at products of high molar activity by ‘late-stage’ labelling of small (hetero)aromatic molecules and the use of transition metals. This is accompanied by the improvement of technical procedures, like preparation of reactive [18F]fluoride and automated syntheses. The newly introduced procedures reflect a high innovative level and creativity in radio(pharmaceutical) chemistry at present, which are based on modern chemical methods and deep mechanistic insights. Taking also automation and quality control into consideration, major recently developed radiofluorination methods, most of those still under development, are compiled here in view of their potential for clinical PET imaging and thus the ability to advance molecular imaging
    corecore