552 research outputs found

    Characterisation of the genomic landscape of CRLF2-rearranged acute lymphoblastic leukemia

    Get PDF
    Deregulated expression of the type I cytokine receptor, CRLF2, is observed in 5–15% of precursor B-cell acute lymphoblastic leukaemia (B-ALL). We aimed to determine the clinical and genetic landscape of those with IGH-CRLF2 or P2RY8-CRLF2 (CRLF2-r) using multiple genomic approaches. Clinical and demographic features of CRLF2-r patients were characteristic of B-ALL. Patients with IGH-CRLF2 were older (14 y vs. 4 y, P < .001), while the incidence of CRLF2-r among Down syndrome patients was high (50/161, 31%). CRLF2-r co-occurred with primary chromosomal rearrangements but the majority (111/161, 69%) had B-other ALL. Copy number alteration (CNA) profiles were similar to B-other ALL, although CRLF2-r patients harbored higher frequencies of IKZF1 (60/138, 43% vs. 77/1351, 24%) and BTG1 deletions (20/138, 15% vs. 3/1351, 1%). There were significant differences in CNA profiles between IGH-CRLF2 and P2RY8-CRLF2 patients: IKZF1 (25/35, 71% vs. 36/108, 33%, P < .001), BTG1 (11/35, 31% vs. 10/108, 9%, P =.004), and ADD3 deletions (9/19, 47% vs. 5/38, 13%, P =.008). A novel gene fusion, USP9X-DDX3X, was discovered in 10/54 (19%) of patients. Pathway analysis of the mutational profile revealed novel involvement for focal adhesion. Although the functional relevance of many of these abnormalities are unknown, they likely activate additional pathways, which may represent novel therapeutic targets

    dup(21q) amplified (RUNX1)

    Get PDF
    Review on dup(21q) amplified (RUNX1), with data on clinics, and the genes involved

    <em>DUX4</em>-rearranged B-ALL: deciphering a biological and clinical conundrum

    Get PDF
    \ua9 The Author(s) 2025. The DUX4 gene, located within repetitive subtelomeric arrays on chromosomes 4 and 10, plays a critical role in early embryogenesis and has been implicated in several human diseases, including facioscapulohumeral muscular dystrophy (FSHD) and cancer. In B-cell acute lymphoblastic leukemia (B-ALL), DUX4 rearrangements (DUX4-r) define a distinct genomic subtype affecting 5–10% of cases, which is more frequent among older children and teenagers. These rearrangements produce truncated DUX4 proteins with neomorphic transcriptional activity, resulting in aberrant gene expression programs and alternative splicing that disrupt normal B-cell precursor development. Patients with DUX4-r B-ALL often present with poor initial treatment responses, though they typically achieve excellent long-term survival rates with intensive chemotherapy regimens. The cryptic nature of DUX4 rearrangements has historically posed significant challenges to accurate detection, but recent advancements in next-generation sequencing technologies, including RNA and long-read sequencing, and improved immunophenotyping strategies—such as the use of CD371 as a surrogate marker—are enhancing diagnostic accuracy. This review explores the genetic and biological features of DUX4 and its rearrangements, shedding light on their role in leukemogenesis and associated clinical outcomes. Additionally, we highlight emerging technologies that enable the detection of DUX4-r and discuss their implications for clinical use and research. An improved understanding of DUX4 biology and its oncogenic potential may pave the way for novel treatment strategies, ultimately improving outcomes for patients with DUX4-r B-ALL

    The 9p21.3 risk of childhood acute lymphoblastic leukaemia is explained by a rare high-impact variant in CDKN2A

    Get PDF
    Genome-wide association studies (GWAS) have provided strong evidence for inherited predisposition to childhood acute lymphoblastic leukaemia (ALL) identifying a number of risk loci. We have previously shown common SNPs at 9p21.3 influence ALL risk. These SNP associations are generally not themselves candidates for causality, but simply act as markers for functional variants. By means of imputation of GWAS data and subsequent validation SNP genotyping totalling 2,177 ALL cases and 8,240 controls, we have shown that the 9p21.3 association can be ascribed to the rare highimpact CDKN2A p.Ala148Thr variant (rs3731249; Odds ratio=2.42, P=3.45×10−19). The association between rs3731249 genotype and risk was not specific to particular subtype of B-cell ALL. The rs3731249 variant is associated with predominant nuclear localisation of the CDKN2A transcript suggesting the functional effect of p.Ala148Thr on ALL risk may be through compromised ability to inhibit cyclin D within the cytoplasm

    Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia

    Get PDF
    Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2D-BCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered

    A genome-wide association study identifies risk loci for childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1.

    Get PDF
    Genome-wide association studies (GWASs) have shown that common genetic variation contributes to the heritable risk of childhood acute lymphoblastic leukemia (ALL). To identify new susceptibility loci for the largest subtype of ALL, B-cell precursor ALL (BCP-ALL), we conducted a meta-analysis of two GWASs with imputation using 1000 Genomes and UK10K Project data as reference (totaling 1658 cases and 7224 controls). After genotyping an additional 2525 cases and 3575 controls, we identify new susceptibility loci for BCP-ALL mapping to 10q26.13 (rs35837782, LHPP, P=1.38 × 10(-11)) and 12q23.1 (rs4762284, ELK3, P=8.41 × 10(-9)). We also provide confirmatory evidence for the existence of independent risk loci at 9p21.3, but show that the association marked by rs77728904 can be accounted for by linkage disequilibrium with the rare high-impact CDKN2A p.Ala148Thr variant rs3731249. Our data provide further insights into genetic susceptibility to ALL and its biology

    Single nucleotide polymorphism (SNP) array-based signature of low hypodiploidy in acute lymphoblastic leukemia.

    Get PDF
    Low hypodiploidy (30-39 chromosomes) is one of the most prevalent genetic subtypes among adults with ALL and is associated with a very poor outcome. Low hypodiploid clones can often undergo a chromosomal doubling generating a near-triploid clone (60-78 chromosomes). When cytogenetic techniques detect a near triploid clone, a diagnostic challenge may ensue in differentiating presumed duplicated low hypodiploidy from good risk high hyperdiploid ALL (51-67 chromosomes). We used single-nucleotide polymorphism (SNP) arrays to analyze low hypodiploid/near triploid (HoTr) (n=48) and high hyperdiploid (HeH) (n=40) cases. In addition to standard analysis, we derived log2 ratios for entire chromosomes enabling us to analyze the cohort using machine-learning techniques. Low hypodiploid and near triploid cases clustered together and separately from high hyperdiploid samples. Using these approaches, we also identified three cases with 50-60 chromosomes, originally called as HeH, which were, in fact, HoTr and two cases incorrectly called as HoTr. TP53 mutation analysis supported the new classification of all cases tested. Next, we constructed a classification and regression tree model for predicting ploidy status with chromosomes 1, 7 and 14 being the key discriminators. The classifier correctly identified 47/50 (94%) HoTr cases. We validated the classifier using an independent cohort of 44 cases where it correctly called 7/7 (100%) low hypodiploid cases. The results of this study suggest that HoTr is more frequent among older adults with ALL than previously estimated and that SNP array analysis should accompany cytogenetics where possible. The classifier can assist where SNP array patterns are challenging to interpret. This article is protected by copyright. All rights reserved

    Developing international business relationships in a Russian context

    Get PDF
    The collapse of the former Soviet Union has opened up a wealth of business opportunities for companies seeking new markets in the Russian Federation. Despite this, firms intending to do business in Russia have found themselves hampered by cultural differences in business practices and expectations. As Russia integrates into the global economy, understanding such practices and the managerial mindset of business people is crucial for managers who hope to navigate Russia's complex markets. This study draws on the trust literature and adopts quantitative tools to deconstruct the Russian 'Sviazi' system of social capital business networking. We develop a model isolating three dimensions of Sviazi: one an affective or emotional component; the second, a conative component; and the third, a cognitive component. The model provides a useful guide for helping foreign firms to succeed in Russia, while also serving as a basis for further research in the field. Keywords
    corecore