10 research outputs found
DNA barcoding of Brazilian sea turtles (Testudines)
Five out of the seven recognized species of sea turtles (Testudines) occur on the Brazilian coast. The Barcode Initiative is an effort to undertake a molecular inventory of Earth biodiversity. Cytochrome Oxidase c subunit I (COI) molecular tags for sea turtle species have not yet been described. In this study, COI sequences for the five species of sea turtles that occur in Brazil were generated. These presented widely divergent haplotypes. All observed values were on the same range as those already described for other animal groups: the overall mean distance was 8.2%, the mean distance between families (Dermochelyidae and Cheloniidae) 11.7%, the mean intraspecific divergence 0.34%, and the mean distance within Cheloniidae 6.4%, this being 19-fold higher than the mean divergence observed within species. We obtained species-specific COI barcode tags that can be used for identifying each of the marine turtle species studied
Characterization of effector cells of graft vs leukemia following allogeneic bone marrow transplantation in mice inoculated with murine B-cell leukemia
It is now widely accepted that immunocompetent lymphocytes in allogeneic bone marrow grafts exert an antileukemic effect that contributes to the cure of leukemia. Graft vs leukemia (GVL) effects independent of graft vs host disease were investigated in allogeneic bone marrow chimeras tolerant of host and donor alloantigens. The role of Thy1.2, L3T4 and Lyt2 T lymphocytes as effector cells of GVL were investigated in (BALB/c x C57BL/6)F1 mice inoculated with murine B-cell leukemia and subsequently conditioned with total lymphoid irradiation and cyclophosphamide (200 mg/kg). Mice were reconstituted with C57BL/6 bone marrow cells depleted of well-defined T-cell subsets or enriched for stem cells by the soybean agglutination method. Detection of residual tumor cells, an indicator for efficacy of GVL, was carried out by adoptive transfer of peripheral blood or spleen cells obtained from treated chimeras into secondary naive BALB/c recipients at different time intervals following bone marrow transplantation. Treatment of the primary marrow inoculum with monoclonal anti-Thy1.2 or anti-Lyt2 abolished the GVL effects and all secondary BALB/c recipients developed leukemia within 60 days. On the other hand, the treatment with monoclonal anti-L3T4 did not influence the effect of GVL and all treated recipients remained without leukemia. The data suggest that T cells may mediate GVL effects in the absence of graft vs host disease and in circumstances where tolerance to conventional alloantigens is elicited. Effector cells of GVL across the major histocompatibility complex (MHC) in the murine B-cell leukemia tumor model system appear to be Thy1.2+ Lyt2+ L3T4-. Induction of GVL effects by allogeneic cells tolerant of host MHC suggests that these effects may be independent of graft vs host disease.
Identity-by-descent-guided mutation analysis and exome sequencing in consanguineous families reveals unusual clinical and molecular findings in retinal dystrophy
Purpose: Autosomal recessive retinal dystrophies are clinically and genetically heterogeneous, which hampers molecular diagnosis. We evaluated identity-by-descent-guided Sanger sequencing or whole-exome sequencing in 26 families with nonsyndromic (19) or syndromic (7) autosomal recessive retinal dystrophies to identify disease-causing mutations.
Methods: Patients underwent genome-wide identity-by-descent mapping followed by Sanger sequencing (16) or whole-exome sequencing (10). Whole-exome sequencing data were filtered against identity-by-descent regions and known retinal dystrophy genes. The medical history was reviewed in mutation-positive families.
Results: We identified mutations in 14 known retinal dystrophy genes in 20/26 (77%) families: ABCA4, CERKL, CLN3, CNNM4, C2orf71, IQCB1, LRAT, MERTK, NMNAT1, PCDH15, PDE6B, RDH12, RPGRIP1, and USH2A. Whole-exome sequencing in single individuals revealed mutations in either the largest or smaller identity-by-descent regions, and a compound heterozygous genotype in NMNAT1. Moreover, a novel deletion was found in PCDH15. In addition, we identified mutations in CLN3, CNNM4, and IQCB1 in patients initially diagnosed with nonsyndromic retinal dystrophies.
Conclusion: Our study emphasized that identity-by-descent-guided mutation analysis and/or whole-exome sequencing are powerful tools for the molecular diagnosis of retinal dystrophy. Our approach uncovered unusual molecular findings and unmasked syndromic retinal dystrophies, guiding future medical management. Finally, elucidating ABCA4, LRAT, and MERTK mutations offers potential gene-specific therapeutic perspectives
Massively parallel sequencing for early molecular diagnosis in Leber congenital amaurosis
Purpose: Leber congenital amaurosis (LCA) is a rare congenital retinal dystrophy associated with 16 genes. Recent breakthroughs in LCA gene therapy offer the first prospect of treating inherited blindness, which requires an unequivocal and early molecular diagnosis. While present genetic tests do not address this due to a tremendous genetic heterogeneity, massively parallel sequencing (MPS) strategies might bring a solution. Here, we developed a comprehensive molecular test for LCA based on targeted MPS of all exons of 16 known LCA genes.
Methods: We designed a unique and flexible workflow for targeted resequencing of all 236 exons from 16 LCA genes based on quantitative PCR (qPCR) amplicon ligation, shearing, and parallel sequencing of multiple patients on a single lane of a short-read sequencer. Twenty-two prescreened LCA patients were included, five of whom had a known molecular cause.
Results: Validation of 107 variations was performed as proof of concept. In addition, the causal genetic defect and a single heterozygous mutation were identified in 3 and 5, respectively, of 17 patients without previously identified mutations.
Conclusion: We propose a novel targeted MPS-based approach that is suitable for accurate, fast, and cost-effective early molecular testing in LCA, and easily applicable in other genetic disorders