161 research outputs found

    Application of the DRA method to the calculation of the four-loop QED-type tadpoles

    Full text link
    We apply the DRA method to the calculation of the four-loop `QED-type' tadpoles. For arbitrary space-time dimensionality D the results have the form of multiple convergent sums. We use these results to obtain the epsilon-expansion of the integrals around D=3 and D=4.Comment: References added, some typos corrected. Results unchange

    ABJ(M) Chiral Primary Three-Point Function at Two-loops

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%Article funded by SCOAP

    From weak coupling to spinning strings

    Get PDF
    We identify the gauge theory dual of a spinning string of minimal energy with spins S_1, S_2 on AdS_5 and charge J on S^5. For this purpose we focus on a certain set of local operators with two different types of covariant derivatives acting on complex scalar fields. We analyse the corresponding nested Bethe equations for the ground states in the limit of large spins. The auxiliary Bethe roots form certain string configurations in the complex plane, which enable us to derive integral equations for the leading and sub-leading contribution to the anomalous dimension. The results can be expressed through the observables of the sl(2) sub-sector, i.e. the cusp anomaly f(g) and the virtual scaling function B_L(g), rendering the strong-coupling analysis straightforward. Furthermore, we also study a particular sub-class of these operators specialising to a scaling limit with finite values of the second spin at weak and strong coupling.Comment: 23 pages, 3 figures, minor changes, references adde

    Five-loop anomalous dimension at critical wrapping order in N=4 SYM

    Full text link
    We compute the anomalous dimension of a length-five operator at five-loop order in the SU(2) sector of N=4 SYM theory in the planar limit. This is critical wrapping order at five loops. The result is obtained perturbatively by means of N=1 superspace techniques. Our result from perturbation theory confirms explicitly the formula conjectured in arXiv:0901.4864 for the five-loop anomalous dimension of twist-three operators. We also explicitly obtain the same result by employing the recently proposed Y-system.Comment: LaTeX, feynmp, 34 pages, 21 figures, 8 table

    Double-logs, Gribov-Lipatov reciprocity and wrapping

    Full text link
    We study analytical properties of the five-loop anomalous dimension of twist-2 operators at negative even values of Lorentz spin. Following L. N. Lipatov and A. I. Onishchenko, we have found two possible generalizations of double-logarithmic equation, which allow to predict a lot of poles of anomalous dimension of twist-2 operators at all orders of perturbative theory from the known results. Second generalization is related with the reciprocity-respecting function, which is a single-logarithmic function in this case. We have found, that the knowledge of first orders of the reciprocity-respecting function gives all-loop predictions for the highest poles. Obtained predictions can be used for the reconstruction of a general form of the wrapping corrections for twist-2 operators.Comment: 17 pages, references adde

    An Extremal Chiral Primary Three-Point Function at Two-loops in ABJ(M)

    Get PDF
    archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-23 slaccitation: %%CITATION = ARXIV:1411.0626;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-23 slaccitation: %%CITATION = ARXIV:1411.0626;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-23 slaccitation: %%CITATION = ARXIV:1411.0626;%

    On form factors in N=4 sym

    Full text link
    In this paper we study the form factors for the half-BPS operators OI(n)\mathcal{O}^{(n)}_I and the N=4\mathcal{N}=4 stress tensor supermultiplet current WABW^{AB} up to the second order of perturbation theory and for the Konishi operator K\mathcal{K} at first order of perturbation theory in N=4\mathcal{N}=4 SYM theory at weak coupling. For all the objects we observe the exponentiation of the IR divergences with two anomalous dimensions: the cusp anomalous dimension and the collinear anomalous dimension. For the IR finite parts we obtain a similar situation as for the gluon scattering amplitudes, namely, apart from the case of WABW^{AB} and K\mathcal{K} the finite part has some remainder function which we calculate up to the second order. It involves the generalized Goncharov polylogarithms of several variables. All the answers are expressed through the integrals related to the dual conformal invariant ones which might be a signal of integrable structure standing behind the form factors.Comment: 35 pages, 7 figures, LATEX2

    The Regge Limit for Green Functions in Conformal Field Theory

    Full text link
    We define a Regge limit for off-shell Green functions in quantum field theory, and study it in the particular case of conformal field theories (CFT). Our limit differs from that defined in arXiv:0801.3002, the latter being only a particular corner of the Regge regime. By studying the limit for free CFTs, we are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak coupling. The dominance of Feynman graphs where only two high momentum lines are exchanged in the t-channel, follows simply from the free field analysis. We can then define the BFKL kernel in terms of the two point function of a simple light-like bilocal operator. We also include a brief discussion of the gravity dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit defined here and previous work in CFT. Clarification of causal orderings in the limit. References adde
    • …
    corecore