27 research outputs found

    Effect of Grain Size and Shape on Undrained Behaviour of Sands

    Get PDF
    The stress–strain and stress path characteristics of sands are influenced by their grain size, shape, and packing. Morphological characteristics and size of particles play important role on the undrained shear strength of sands. Often, effects of these parameters are complex and cannot be easily distinguished. This study advances the knowledge of the role of particle size and shape on the undrained shear strength of sands. To eliminate the consequence of morphological characteristics, two sands with different particle sizes but similar angularity, and another sand with different roundness were selected for the study. These morphological characteristics for all three sands were determined from the analysis of scanning electron microscope images. F131 sand with higher median grain size and lower shape factors (rᵣ and rₛ) had highest undrained peak shear strength and phase transformation value. Undrained strength (qₚₜ) and effective principal stress (P′ₚₜ) in phase transformation point had direct relationship with grain median grain size (D₅₀) and inversely effect of shape factor (rᵣ and rₛ). F131 and F161 sands represented highest peak and ultimate steady-state strengths, respectively. Flow potential appeared to be directly proportional with (rᵣ and rₛ) and inversely with D₅₀. The peak index decreased with increasing shape factors (rᵣ and rₛ)

    On the residual opening of hydraulic fractures

    Get PDF
    Hydraulic stimulation technologies are widely applied across resource and power generation industries to increase the productivity of oil/gas or hot water reservoirs. These technologies utilise pressurised water, which is applied inside the well to initiate and drive fractures as well as to open a network of existing natural fractures. To prevent the opened fractures from complete closure during production stage, small particles (proppants) are normally injected with the pressurised fluid. These particles are subjected to confining stresses when the fluid pressure is removed, which leads to a partial closure of the stimulated fractures. The residual fracture openings are the main outcome of such hydraulic stimulations as these openings significantly affect the permeability of the reservoirs and, subsequently, the well productivity. Past research was largely focused on the assessment of conditions and characteristics of fluid driven fractures as well as proppant placement techniques. Surprisingly, not much work was devoted to the assessment of the residual fracture profiles. In this work we develop a simplified non-linear mathematical model of residual closure of a plane crack filled with deformable particles and subjected to a remote compressive stress. It is demonstrated that the closure profile is significantly influenced by the distribution and compressibility of the particles, which are often ignored in the current evaluations of well productivity. © 2013 Springer Science+Business Media Dordrecht.Luiz Bortolan Neto, Andrei Kotouso

    A Criterion for Brittle Failure of Rocks Using the Theory of Critical Distances

    Get PDF
    This paper presents a new analytical criterion for brittle failure of rocks and heavily overconsolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as the critical distance. This fracture criterion is known as the Point Method, and is part of the Theory of Critical Distances, which is utilized in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, ó0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, óc and ót. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (óc/ót=3-50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low confining stresses.The work presented was initiated during a research project on “Structural integrity assessments of notch-type defects", for the Spanish Ministry of Science and Innovation (Ref.: MAT2010-15721)

    Computational Homogenization of Architectured Materials

    Get PDF
    Architectured materials involve geometrically engineered distributions of microstructural phases at a scale comparable to the scale of the component, thus calling for new models in order to determine the effective properties of materials. The present chapter aims at providing such models, in the case of mechanical properties. As a matter of fact, one engineering challenge is to predict the effective properties of such materials; computational homogenization using finite element analysis is a powerful tool to do so. Homogenized behavior of architectured materials can thus be used in large structural computations, hence enabling the dissemination of architectured materials in the industry. Furthermore, computational homogenization is the basis for computational topology optimization which will give rise to the next generation of architectured materials. This chapter covers the computational homogenization of periodic architectured materials in elasticity and plasticity, as well as the homogenization and representativity of random architectured materials

    Topological interlocking blocks for architecture: From flat to curved morphologies

    No full text
    The paper concerns the theme of topological interlocking blocks for architecture and the relationship between flat stereotomic assemblies and curved morphologies. After a brief history of the subject, theoretical foundations and speculative research are presented. The research includes several built full-scale prototypes and architectural elements. The last part of the chapter describes the didactic experiences concerning the theme, during the third year Architectural Design Studio held by the authors, at Politecnico di Bari, Italy

    Modelling the large deformations in stratified media - the Cosserat continuum approach

    No full text
    Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd
    corecore