18 research outputs found

    Profiling microRNAs in individuals at risk of progression to rheumatoid arthritis

    Get PDF
    Background: Individuals at risk of rheumatoid arthritis (RA) demonstrate systemic autoimmunity in the form of anti-citrullinated peptide antibodies (ACPA). MicroRNAs (miRNAs) are implicated in established RA. This study aimed to (1) compare miRNA expression between healthy individuals and those at risk of and those that develop RA, (2) evaluate the change in expression of miRNA from "at-risk" to early RA and (3) explore whether these miRNAs could inform a signature predictive of progression from "at-risk" to RA. Methods: We performed global profiling of 754 miRNAs per patient on a matched serum sample cohort of 12 anti-cyclic citrullinated peptide (CCP) + "at-risk" individuals that progressed to RA. Each individual had a serum sample from baseline and at time of detection of synovitis, forming the matched element. Healthy controls were also studied. miRNAs with a fold difference/fold change of four in expression level met our primary criterion for selection as candidate miRNAs. Validation of the miRNAs of interest was conducted using custom miRNA array cards on matched samples (baseline and follow up) in 24 CCP+ individuals; 12 RA progressors and 12 RA non-progressors. Results: We report on the first study to use matched serum samples and a comprehensive miRNA array approach to identify in particular, three miRNAs (miR-22, miR-486-3p, and miR-382) associated with progression from systemic autoimmunity to RA inflammation. MiR-22 demonstrated significant fold difference between progressors and non-progressors indicating a potential biomarker role for at-risk individuals. Conclusions: This first study using a cohort with matched serum samples provides important mechanistic insights in the transition from systemic autoimmunity to inflammatory disease for future investigation, and with further evaluation, might also serve as a predictive biomarker

    Osteogenic differentiation of fibroblast-like synovial cells in rheumatoid arthritis is induced by microRNA-218 through a ROBO/Slit pathway

    Get PDF
    Background: Fibroblast-like synovial cells (FLS) have multilineage differentiation potential including osteoblasts. We aimed to investigate the role of microRNAs during the osteogenic differentiation of rheumatoid arthritis (RA)-FLS. Methods: RA-FLS were differentiated in osteogenic medium for 21 days. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) staining and Alizarin Red staining. MicroRNA (miRNA) array analysis was performed to investigate the differentially expressed miRNAs during osteogenic differentiation. Expression of miR-218-5p (miR-218) during the osteogenic differentiation was determined by quantitative real-time PCR. Transfections with an miR-218 precursor and inhibitor were used to confirm the targets of miR-218 and to analyze the ability of miR-218 to induce osteogenic differentiation. Secreted Dickkopf-1 (DKK1) from FLS transfected with miR-218 precursor/inhibitor or roundabout 1 (ROBO1) knockdown FLS established using ROBO1-small interfering RNA (siRNA) were measured by ELISA. Results: The miRNA array revealed that 12 miRNAs were upregulated and 24 miRNAs were downregulated after osteogenic differentiation. We observed that the level of miR-218 rose in the early phase of osteogenic differentiation and then decreased. Pro-inflammatory cytokines modified the expression of miR-218. The induction of miR-218 in RA-FLS decreased ROBO1 expression, and promoted osteogenic differentiation. Both the overexpression of miR-218 and the knockdown of ROBO1 in RA-FLS decreased DKK1 secretion. Conclusion: We identified miR-218 as a crucial inducer of the osteogenic differentiation of RA-FLS. MiR-218 modulates the osteogenic differentiation of RA-FLS through the ROBO1/DKK-1 axis. The induction of the osteogenic differentiation of proliferating RA-FLS through the provision of miR-218 into RA-FLS or by boosting the cellular reservoir of miR-218 might thus become a therapeutic strategy for RA
    corecore