10 research outputs found

    Co-Administration of a Plasmid DNA Encoding IL-15 Improves Long-Term Protection of a Genetic Vaccine against Trypanosoma cruzi

    Get PDF
    Background: Immunization of mice with the Trypanosoma cruzi trans-sialidase (TS) gene using plasmid DNA, adenoviral vector, and CpG-adjuvanted protein delivery has proven highly immunogenic and provides protection against acute lethal challenge. However, long-term protection induced by TS DNA vaccines has not been reported. the goal of the present work was to test whether the co-administration of a plasmid encoding IL-15 (pIL-15) could improve the duration of protection achieved through genetic vaccination with plasmid encoding TS (pTS) alone.Methodology: We immunized BALB/c mice with pTS in the presence or absence of pIL-15 and studied immune responses [with TS-specific IFN-gamma ELISPOT, serum IgG ELISAs, intracellular cytokine staining (IFN-gamma, TNF-alpha, and IL-2), tetramer staining, and CFSE dilution assays] and protection against lethal systemic challenge at 1 to 6 months post vaccination. Mice receiving pTS alone developed robust TS-specific IFN-gamma responses and survived a lethal challenge given within the first 3 months following immunization. the addition of pIL-15 to pTS vaccination did not significantly alter T cell responses or protection during this early post-vaccination period. However, mice vaccinated with both pTS and pIL-15 challenged 6 months post-vaccination were significantly more protected against lethal T. cruzi challenges than mice vaccinated with pTS alone (P6 months post immunization. Also, these TS-specific T cells were better able to expand after in vitro restimulation.Conclusion: Addition of pIL-15 during genetic vaccination greatly improved long-term T cell survival, memory T cell expansion, and long-term protection against the important human parasite, T. cruzi.National Institutes of HealthFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Millennium Institute for Gene TherapySt Louis Univ, Dept Internal Med, St Louis, MO 63103 USAUniversidade Federal de São Paulo, Ctr Terapia Celular & Mol, Escola Paulista Med, São Paulo, BrazilSt Louis Univ, Dept Mol Microbiol, St Louis, MO 63103 USAUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Microbiol, Belo Horizonte, MG, BrazilUniversidade Federal de São Paulo, Ctr Terapia Celular & Mol, Escola Paulista Med, São Paulo, BrazilNational Institutes of Health: RO1 AI040196CNPq: 420067/2005-1Web of Scienc

    Hydrogenation of Xylenes, Ethylbenzene, and Isopropylbenzene on Ni Nanoparticles

    No full text
    Kinetic and thermodynamic parameters of the catalysts containing 15% of the Ni nanoparticles prepared by the levitation-jet method in the hydrogenation of xylenes, ethylbenzene, and isopropylbenzene were studied using a laboratory-made chromatographic setup. At relatively low hydrogen pressure (2 atm) and temperatures of 423–493 K, our catalysts provide a high extent of conversion of the compounds studied and selectivity concerning p-xylene

    Adsorptivity of Some Organic Compounds to Copper Nanoparticles

    No full text
    Adsorptivity of some organic compounds to the copper nanoparticles prepared using the levitation-jet generator was characterized by inverse gas chromatography. The measured values of a specific volume of retained sorbate were used to calculate adsorption heats and entropy factors of the process
    corecore