336 research outputs found
Stability of homogeneous magnetic phases in a generalized t-J model
We study the stability of homogeneous magnetic phases in a generalized t-J
model including a same-sublattice hopping t' and nearest-neighbor repulsion V
by means of the slave fermion-Schwinger boson representation of spin operators.
At mean-field order we find, in agreement with other authors, that the
inclusion of further-neighbor hopping and Coulomb repulsion makes the
compressibility positive, thereby stabilizing at this level the spiral and Neel
orders against phase separation. However, the consideration of Gaussian
fluctuation of order parameters around these mean-field solutions produces
unstable modes in the dynamical matrix for all relevant parameter values,
leaving only reduced stability regions for the Neel phase. We have computed the
one-loop corrections to the energy in these regions, and have also briefly
considered the effects of the correlated hopping term that is obtained in the
reduction from the Hubbard to the t-J model.Comment: 5 pages, 5 figures, Revte
Atomic Model of Susy Hubbard Operators
We apply the recently proposed susy Hubbard operators to an atomic model. In
the limiting case of free spins, we derive exact results for the entropy which
are compared with a mean field + gaussian corrections description. We show how
these results can be extended to the case of charge fluctuations and calculate
exact results for the partition function, free energy and heat capacity of an
atomic model for some simple examples. Wavefunctions of possible states are
listed. We compare the accuracy of large N expansions of the susy spin
operators with those obtained using `Schwinger bosons' and `Abrikosov
pseudo-fermions'. For the atomic model, we compare results of slave boson,
slave fermion, and susy Hubbard operator approximations in the physically
interesting but uncontrolled limiting case of N->2. For a mixed representation
of spins we estimate the accuracy of large N expansions of the atomic model. In
the single box limit, we find that the lowest energy saddle-point solution
reduces to simply either slave bosons or slave fermions, while for higher boxes
this is not the case. The highest energy saddle-point solution has the
interesting feature that it admits a small region of a mixed representation,
which bears a superficial resemblance to that seen experimentally close to an
antiferromagnetic quantum critical point.Comment: 17 pages + 7 pages Appendices, 14 figures. Substantial revision
MeV-mass dark matter and primordial nucleosynthesis
The annihilation of new dark matter candidates with masses in the MeV
range may account for the galactic positrons that are required to explain the
511 keV -ray flux from the galactic bulge. We study the impact of
MeV-mass thermal relic particles on the primordial synthesis of H, He,
and Li. If the new particles are in thermal equilibrium with neutrinos
during the nucleosynthesis epoch they increase the helium mass fraction for
m_X\alt 10 MeV and are thus disfavored. If they couple primarily to the
electromagnetic plasma they can have the opposite effect of lowering both
helium and deuterium. For --10 MeV they can even improve the overall
agreement between the predicted and observed H and He abundances.Comment: 11 pages, 10 figures, references and two appendices added,
conclusions unchanged; accepted for publication in Phys.Rev.
The d'-Dibaryon in the Nonrelativistic Quark Model
The narrow peak recently found in various pionic double charge exchange (DCX)
cross sections can be explained by the assumption of a universal resonance at
2065 MeV, called d'. We calculate the mass of a six-quark system with J^P=0^-,
T=0 quantum numbers employing a cluster model and a shell model basis to
diagonalize the nonrelativistic quark model Hamiltonian.Comment: 7 pages, Latex, 2 figures, invited talk at 6th Int. Symp. on Mesons
and Nucleons 1995, Blaubeuren, Germany, 10-14 July 1995, to be published in
pi-N Newsletter
Transitions from small to large Fermi momenta in a one-dimensional Kondo lattice model
We study a one-dimensional system that consists of an electron gas coupled to
a spin-1/2 chain by Kondo interaction away from half-filling. We show that
zero-temperature transitions between phases with "small" and "large" Fermi
momenta can be continuous. Such a continuous but Fermi-momentum-changing
transition arises in the presence of spin anisotropy, from a Luttinger liquid
with a small Fermi momentum to a Kondo-dimer phase with a large Fermi momentum.
We have also added a frustrating next-nearest-neighbor interaction in the spin
chain to show the possibility of a similar Fermi-momentum-changing transition,
between the Kondo phase and a spin-Peierls phase, in the spin isotropic case.
This transition, however, appears to involve a region in which the two phases
coexist.Comment: The updated version clarifies the definitions of small and large
Fermi momenta, the role of anisotropy, and how Kondo interaction affects
Luttinger liquid phase. 12 pages, 5 figure
Magnetic Incommensurability in Doped Mott Insulator
In this paper we explore the incommensurate spatial modulation of spin-spin
correlations as the intrinsic property of the doped Mott insulator, described
by the model. We show that such an incommensurability is a direct
manifestation of the phase string effect introduced by doped holes in both one-
and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin
susceptibility in momentum space are in agreement with the neutron-scattering
measurement of cuprate superconductors in both position and doping dependence.
In particular, this incommensurate structure can naturally reconcile the
neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure
Surprises in the Orbital Magnetic Moment and g-Factor of the Dynamic Jahn-Teller Ion C_{60}^-
We calculate the magnetic susceptibility and g-factor of the isolated
C_{60}^- ion at zero temperature, with a proper treatment of the dynamical
Jahn-Teller effect, and of the associated orbital angular momentum, Ham-reduced
gyromagnetic ratio, and molecular spin-orbit coupling. A number of surprises
emerge. First, the predicted molecular spin-orbit splitting is two orders of
magnitude smaller than in the bare carbon atom, due to the large radius of
curvature of the molecule. Second, this reduced spin-orbit splitting is
comparable to Zeeman energies, for instance, in X-band EPR at 3.39KGauss, and a
field dependence of the g-factor is predicted. Third, the orbital gyromagnetic
factor is strongly reduced by vibron coupling, and so therefore are the
effective weak-field g-factors of all low-lying states. In particular, the
ground-state doublet of C_{60}^- is predicted to show a negative g-factor of
\sim -0.1.Comment: 19 pages RevTex, 2 postscript figures include
Frustration and the Kondo effect in heavy fermion materials
The observation of a separation between the antiferromagnetic phase boundary
and the small-large Fermi surface transition in recent experiments has led to
the proposal that frustration is an important additional tuning parameter in
the Kondo lattice model of heavy fermion materials. The introduction of a Kondo
(K) and a frustration (Q) axis into the phase diagram permits us to discuss the
physics of heavy fermion materials in a broader perspective. The current
experimental situation is analysed in the context of this combined "QK" phase
diagram. We discuss various theoretical models for the frustrated Kondo
lattice, using general arguments to characterize the nature of the -electron
localization transition that occurs between the spin liquid and heavy Fermi
liquid ground-states. We concentrate in particular on the Shastry--Sutherland
Kondo lattice model, for which we establish the qualitative phase diagram using
strong coupling arguments and the large- expansion. The paper closes with
some brief remarks on promising future theoretical directions.Comment: To appear in a special issue of JLT
Quantum phase transitions and thermodynamic properties in highly anisotropic magnets
The systems exhibiting quantum phase transitions (QPT) are investigated
within the Ising model in the transverse field and Heisenberg model with
easy-plane single-site anisotropy. Near QPT a correspondence between parameters
of these models and of quantum phi^4 model is established. A scaling analysis
is performed for the ground-state properties. The influence of the external
longitudinal magnetic field on the ground-state properties is investigated, and
the corresponding magnetic susceptibility is calculated. Finite-temperature
properties are considered with the use of the scaling analysis for the
effective classical model proposed by Sachdev. Analytical results for the
ordering temperature and temperature dependences of the magnetization and
energy gap are obtained in the case of a small ground-state moment. The forms
of dependences of observable quantities on the bare splitting (or magnetic
field) and renormalized splitting turn out to be different. A comparison with
numerical calculations and experimental data on systems demonstrating magnetic
and structural transitions (e.g., into singlet state) is performed.Comment: 46 pages, RevTeX, 6 figure
Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators
We discuss the general theoretical arguments advanced earlier for the T=0
global phase diagram of antiferromagnetic Kondo lattice systems, distinguishing
between the established and the conjectured. In addition to the well-known
phase of a paramagnetic metal with a "large" Fermi surface (P_L), there is also
an antiferromagnetic phase with a "small" Fermi surface (AF_S). We provide the
details of the derivation of a quantum non-linear sigma-model (QNLsM)
representation of the Kondo lattice Hamiltonian, which leads to an effective
field theory containing both low-energy fermions in the vicinity of a Fermi
surface and low-energy bosons near zero momentum. An asymptotically exact
analysis of this effective field theory is made possible through the
development of a renormalization group procedure for mixed fermion-boson
systems. Considerations on how to connect the AF_S and P_L phases lead to a
global phase diagram, which not only puts into perspective the theory of local
quantum criticality for antiferromagnetic heavy fermion metals, but also
provides the basis to understand the surprising recent experiments in
chemically-doped as well as pressurized YbRh2Si2. We point out that the AF_S
phase still occurs for the case of an equal number of spin-1/2 local moments
and conduction electrons. This observation raises the prospect for a global
phase diagram of heavy fermion systems in the Kondo-insulator regime. Finally,
we discuss the connection between the Kondo breakdown physics discussed here
for the Kondo lattice systems and the non-Fermi liquid behavior recently
studied from a holographic perspective.Comment: (v3) leftover typos corrected. (v2) Published version. 32 pages, 4
figures. Section 7, on the connection between the Kondo lattice systems and
the holographic models of non-Fermi liquid, is expanded. (v1) special issue
of JLTP on quantum criticalit
- …