45 research outputs found

    Thermodynamics and optical conductivity of unconventional spin density waves

    Full text link
    We consider the possibility of formation of an unconventional spin density wave (USDW) in quasi-one dimensional electronic systems. In analogy with unconventional superconductivity, we develop a mean field theory of SDW allowing for the momentum dependent gap Δ(k)\Delta({\bf k}) on the Fermi surface. Conditions for the appearence of such a low temperature phase are investigated. The excitation spectrum and basic thermodynamic properties of the model are found to be very similar to those of d-wave superconductors in spite of the different topology of their Fermi surfaces. Several correlation functions are calculated, and the frequency dependent conductivity is evaluated for various gap functions. The latter is found to reflect the maximum gap value, however with no sharp onset for absorbtion.Comment: 13 pages, 11 figures, submitted to Phys. Rev.

    Európai Graduális Kollégium = International Research Training Group

    Get PDF
    A kutatási támogatást a Budapest-Marburg nemzetközi doktori iskola két magyar PhD hallgatójának ösztöndíjára fordítottuk. A hallgatók személye a futamidő alatt tanévenként változott, így a beszámolásköteles tevékenység a doktori iskola több témáját is érinti. Az ''Elektron spin rezonancia szilárdtestekben'' című témakörben kifejlesztettünk két, speciális feladatok elvégzésére alkalmas ESR spektrométert, melyeknek kiváló tulajdonságait antiferromágneses, szupravezető és fullerid polimer anyagokon végzett mérésekkel demonstráltuk. A ''Waveletek és változó felbontású analízis'' című kutatási program keretében olyan elektronszerkezet számítási eljárást dolgoztunk ki, melynek erőforrás igénye kvantumkémiai problémák esetén az elektronszámnak csupán a logaritmusával skálázódik. Az ''Amorf félvezetők növekedési modelljei'' című témakör keretén belül molekuladinamikai szimulációkkal sikeresen értelmeztük a különböző beesési szögek alatt növesztett szelén vékonyrétegek eltérő viselkedését a fény hatására bekövetkező térfogatváltozást illetően. A ''Nemkonvencionális sűrűséghullámok'' című kutatási irány keretén belül elméleti eredményeinket kísérletekkel összevetve meggyőzően demonstráltuk szamos anyag (egyes magashőmérsékletű szupravezetők, töltésátviteli sók és nehézfermionos anyagok) esetében, hogy anomális viselkedésük (pszeudogap, termomágneses transzport) hátterében a fázisdiagrammjuk egyes tartományaiban megjelenő nemkonvencionális kondenzátum áll. | The grant support was used to finance the fellowships of two hungarian PhD students of the Budapest-Marburg international graduate school. During the grant period the persons supported by the fellowships changed from schoolyear to schoolyear, therefore the present report touches upon several projects of the graduate school. Within the framework of the project ''Electron spin resonance in solids'' we have developed two ESR spectrometers able to perform special tasks. The exceptional qualities of these devices were demonstrated by measurements on antiferromagnetic, superconducting and fullerid polymer materials. Work on the project ''Wavelets and multiresolution analysis'' led to a procedure for quantum chemical electron structure calculations, which requires resources proportional only to the logarithm of the number of electrons. We have performed molecular dynamics simulations within the topic ''Growth models of amorphous semiconductors''. Our research explained the different photoinduced volume changes in chalcogenid glasses, depending on the angle of deposition. While working on the project ''Unconventional density waves'', we compared our theoretical results with experiments, and convincingly demonstrated that a number of materials (certain high temperature superconductors, charge transfer salts and heavy fermion materials) owe their anomalous behavior (pseudogap, thermomagnetic transport) to unconventional condensates in regions of their phase diagrams

    Magnetotransport in d-wave density waves

    Full text link
    Angle dependent magnetoresistance (ADMR) and giant Nernst effect are hallmarks of unconventional density waves (UDW). Here these transport properties for d-wave density wave (d-DW) are computed for quasi-two-dimensional systems. The present theory describes ADMR observed in the pseudogap phase of Y_0.68Pr_0.32Ba_2Cu_3O_7 and CeCoIn_5 single crystals very satisfactorily.Comment: 7 pages, 6 figure

    Optical conductivity of d-wave superconductors

    Full text link
    We study theoretically the optical conductivity of d-wave superconductors like in high temperature cuprates in the presence of impurities. We limit ourselves at T=0K and focus on the frequency dependence of both sigma_1(omega) and \omega*\sigma_2(omega) for omega<2Delta. When the impurity scattering is in the unitary limit, we find a peak in sigma_1(omega) with omega/Delta\simeq 0.1\sim 0.5$, which may account for the peak seen by Basov et al. in Zn-substituted YBCO.Comment: 7 pages, 9 figures, submitted to Europhys. Let

    Unconventional charge density wave driven by electron-phonon coupling

    Full text link
    We report our study on unconventional charge density waves (UCDW) (i.e. a charge density wave with wavevector dependent gap) in pure quasi-one dimensional conductors. We develop a new possible mechanism of establishment of such a low temperature phase, in which the driving force of the phase transition is the electron-phonon interaction with coupling depending on both the momentum transfer q and the momentum of the scattered electron k. Mean field treatment is applied to obtain the excitation spectrum, correlation functions such as the density correlator and the optical conductivity, and the effective mass of the phase excitation. The fluctuation of the order parameter leads to the sliding of the UCDW as a whole. In the absence of impurities, we calculated the effect of this fluctuation on the optical properties. The inclusion of the collective mode significantly alters the optical conductivity, and leads to an effective mass which is nonmonotonic in temperature as opposed to conventional CDWs.Comment: 11 figures, 13 pages, Revtex4 styl

    Nemkonvencionális kondenzátumok szilárdtestekben = Unconventional Condensates in Solids

    Get PDF
    A kutatás során a kölcsönható elektronrendszerek nemkonvencionális kondenzátumokkal jellemezhető alacsony hőmérsékleti fázisait vizsgáltuk, különös tekintettel a szupravezető és sűrűséghullám állapotokra. Egy alkalmasan választott átlagtér elmélet segítségével meghatároztunk számos, kísérleti relevanciával bíró fizikai mennyiséget ezekben a rendszerekben. Számításokat végeztünk többek között a nemkonvencionális sűrűséghullámok mágneses térbeli transzport tulajdonságaira vonatkozóan, megvizsgáltuk a Raman szórás és az elektron-fonon csatolás jellegzetességeit, valamint tanulmányoztuk a kondenzátum és különféle szennyezők kölcsönhatását. Eredményeinket összevetettük több magashőmérsékletű szupravezetőn, szerves töltésátviteli són és nehézfermionos anyagon végzett mérésekkel, és a legtöbb esetben nem csak kvalitatív, hanem kvantitatív egyezést találtunk. Vizsgálataink tovább erősítették azt a feltételezést, hogy az említett anyagok fázisdiagrammjának egyes tartományaiban észlelt anomális viselkedés egy nemkonvencionális sűrűséghullám kondenzátum jelenlétének tulajdonítható. | We have investigated the low temperature phases of the interacting electron systems characterized by unconventional condensates. We payed particular attention to superconductors and density waves. Using a suitable mean field theory we have determined a number of physical quantities of experimental interest in these systems. We have calculated among others the magnetotransport properties of unconventional density waves, investigated the peculiarities of Raman scattering and electron-phonon coupling, and studied the interaction of the condensate with various kinds of impurities. We have compared our results with measurements on several high temperature superconductors, organic charge transfer salts and heavy fermion materials, and in most cases we have found not only qualitative, but quantitative agreement. Our investigations have further strengthened the case, that the anomalous behavior in certain regions of the phase diagram of these materials is due to an unconventional density wave condensate

    Local density of states and Friedel oscillations around a non-magnetic impurity in unconventional density wave

    Full text link
    We present a mean-field theoretical study on the effect of a single non-magnetic impurity in quasi-one dimensional unconventional density wave. The local scattering potential is treated within the self-consistent TT-matrix approximation. The local density of states around the impurity shows the presence of resonant states in the vicinity of the Fermi level, much the same way as in dd-density waves or unconventional superconductors. The assumption for different forward and backscattering, characteristic to quasi-one dimensional systems in general, leads to a resonance state that is double peaked in the pseudogap. The Friedel oscillations around the impurity are also explored in great detail, both within and beyond the density wave coherence length Îľ0\xi_0. Beyond Îľ0\xi_0 we find power law behavior as opposed to the exponential decay of conventional density wave. The entropy and specific heat contribution of the impurity are also calculated for arbitrary scattering strengths.Comment: 13 pages, 4 figure
    corecore