8 research outputs found

    Intracellular NAD(H) levels control motility and invasion of glioma cells.

    No full text
    Contains fulltext : 118678.pdf (publisher's version ) (Closed access)Oncogenic transformation involves reprogramming of cell metabolism, whereby steady-state levels of intracellular NAD(+) and NADH can undergo dramatic changes while ATP concentration is generally well maintained. Altered expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD(+)-salvage, accompanies the changes in NAD(H) during tumorigenesis. Here, we show by genetic and pharmacological inhibition of NAMPT in glioma cells that fluctuation in intracellular [NAD(H)] differentially affects cell growth and morphodynamics, with motility/invasion capacity showing the highest sensitivity to [NAD(H)] decrease. Extracellular supplementation of NAD(+) or re-expression of NAMPT abolished the effects. The effects of NAD(H) decrease on cell motility appeared parallel coupled with diminished pyruvate-lactate conversion by lactate dehydrogenase (LDH) and with changes in intracellular and extracellular pH. The addition of lactic acid rescued and knockdown of LDH-A replicated the effects of [NAD(H)] on motility. Combined, our observations demonstrate that [NAD(H)] is an important metabolic component of cancer cell motility. Nutrient or drug-mediated modulation of NAD(H) levels may therefore represent a new option for blocking the invasive behavior of tumors.1 juni 201

    Nutritional and microbiological evaluations of chocolate-coated Chinese chestnut (Castanea mollissima) fruit for commercial use

    No full text
    In recent years, China has become an increasingly important and the largest chestnut producer in the world. This study aimed to evaluate the nutritional value and microbiological quality of the roasted freeze-dried Chinese chestnut (Castanea mollissima) (RFDC) coated with dark chocolate (DCC) and milk chocolate (MCC) for industrial use and commercial consumption. Chocolate coating significantly improved the nutritional value of chestnut. RFDC had high levels of starch (66.23%) and fibers (3.85%) while DCC and MCC contained significantly high amounts of sucrose, protein, fat and minerals. Furthermore, the protein content doubled in MCC rather than in DCC. This could be attributed to the different formulations in the two products. Milk powder and whey protein constituted the source of protein in MCC while cocoa powder added to MCC formulation constituted an additional source of minerals. The amino acid profile showed differences in amino acid composition related to the sample’s protein content, indicating their good nutritional quality. The moisture contents in all RFDC, DCC and MCC were suitable for industrial processing. These results provide information about the additional nutrients of chocolate-coated chestnut and confirm that the product is an interesting nutritional food. The combination of freeze-drying and chocolate-coating generally results in greater reductions on microbiological loads, extending shelf life of harvested chestnut for commercial application. This is an alternative strategy to add value to chestnut, minimizing the significant losses in harvested fruits and providing a wider range of choices of new products to the consumer disposal

    Impact of COVID-19 on Cardiovascular Testing in the United States Versus the Rest of the World

    No full text
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-U.S. institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore