100 research outputs found

    State Effects of Two Forms of Meditation on Prefrontal EEG Asymmetry in Previously Depressed Individuals

    Get PDF
    We investigated state effects of two forms of meditation on electroencephalography prefrontal α-asymmetry, a global indicator of approach versus withdrawal motivation and related affective state. A clinical series of previously depressed individuals were guided to practice either mindfulness breathing meditation (N = 8) or a form of meditation directly aimed at cultivating positive affect, loving kindness or metta meditation (N = 7). Prefrontal asymmetry was assessed directly before and after the 15-min meditation period. Results showed changes in asymmetry towards stronger relative left prefrontal activation, i.e., stronger approach tendencies, regardless of condition. Further explorations of these findings suggested that responses were moderated by participants’ tendencies to engage in ruminative brooding. Individuals high in brooding tended to respond to breathing meditation but not loving kindness meditation, while those low in brooding showed the opposite pattern. Comparisons with an additionally recruited “rest” group provided evidence suggesting that changes seen were not simply attributable to habituation. The results indicate that both forms of meditation practice can have beneficial state effects on prefrontal α-asymmetry and point towards differential indications for offering them in the treatment of previously depressed patients

    Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century

    Get PDF
    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971–2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4–16.5%) of the global population but alleviating it for another 8.3% (6.4–15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI

    Free energy of binding of coiled-coil complexes with different electrostatic environments: the influence of force field polarisation and capping

    Get PDF
    Coiled-coils are well known protein–protein interaction motifs, with the leucine zipper region of activator protein-1 (AP-1) consisting of the c-Jun and c-Fos proteins being a typical example. Molecular dynamics (MD) simulations using the MM/GBSA method have been used to predict the free energy of interaction of these proteins. The influence of force field polarisation and capping on the predicted free energy of binding of complexes with different electrostatic environments (net charge) were investigated. Although both force field polarisation and peptide capping are important for the prediction of the absolute free energy of binding, peptide capping has the largest influence on the predicted free energy of binding. Polarisable simulations appear better suited to determine structural properties of the complexes of these proteins while non-polarisable simulations seem to give better predictions of the associated free energies of bindin

    Physical Analyses of E. coli Heteroduplex Recombination Products In Vivo: On the Prevalence of 5â€Č and 3â€Č Patches

    Get PDF
    BACKGROUND: Homologous recombination in Escherichia coli creates patches (non-crossovers) or splices (half crossovers), each of which may have associated heteroduplex DNA. Heteroduplex patches have recombinant DNA in one strand of the duplex, with parental flanking markers. Which DNA strand is exchanged in heteroduplex patches reflects the molecular mechanism of recombination. Several models for the mechanism of E. coli RecBCD-mediated recombinational double-strand-end (DSE) repair specify that only the 3'-ending strand invades the homologous DNA, forming heteroduplex in that strand. There is, however, in vivo evidence that patches are found in both strands. METHODOLOGY/PRINCIPLE FINDINGS: This paper re-examines heteroduplex-patch-strand polarity using phage lambda and the lambdadv plasmid as DNA substrates recombined via the E. coli RecBCD system in vivo. These DNAs are mutant for lambda recombination functions, including orf and rap, which were functional in previous studies. Heteroduplexes are isolated, separated on polyacrylamide gels, and quantified using Southern blots for heteroduplex analysis. This method reveals that heteroduplexes are still found in either 5' or 3' DNA strands in approximately equal amounts, even in the absence of orf and rap. Also observed is an independence of the RuvC Holliday-junction endonuclease on patch formation, and a slight but statistically significant alteration of patch polarity by recD mutation. CONCLUSIONS/SIGNIFICANCE: These results indicate that orf and rap did not contribute to the presence of patches, and imply that patches occurring in both DNA strands reflects the molecular mechanism of recombination in E. coli. Most importantly, the lack of a requirement for RuvC implies that endonucleolytic resolution of Holliday junctions is not necessary for heteroduplex-patch formation, contrary to predictions of all of the major previous models. This implies that patches are not an alternative resolution of the same intermediate that produces splices, and do not bear on models for splice formation. We consider two mechanisms that use DNA replication instead of endonucleolytic resolution for formation of heteroduplex patches in either DNA strand: synthesis-dependent-strand annealing and a strand-assimilation mechanism

    Lipid accumulation and dendritic cell dysfunction in cancer

    Get PDF
    Professional antigen presenting cells, dendritic cells (DC) are responsible for initiation and maintenance of immune responses. Here, we report that a substantial proportion of DCs in tumor-bearing mice and cancer patients have increased levels of triglycerides. Lipid accumulation in DCs was caused by increased uptake of extracellular lipids due to up-regulation of scavenger receptor A. DCs with high lipid content were not able to effectively stimulate allogeneic T cells or present tumor-associated antigens. DCs with high and normal lipid levels did not differ in expression of MHC and co-stimulatory molecules. However, lipid-laden DCs had reduced capacity to process antigens. Pharmacological normalization of lipid levels in DCs with an inhibitor of acetyl-CoA carboxylase restored the functional activity of DCs and substantially enhanced the effects of a cancer vaccine. These findings support the regulation of immune responses in cancer by manipulation of lipid levels in DCs

    Macrophage biology in development, homeostasis and disease

    Get PDF
    Macrophages the most plastic cells of the hematopoietic system are found in all tissues and exhibit great functional diversity. They have roles in development, homeostasis, tissue repair, and immunity. While anatomically distinct, resident tissue macrophages exhibit different transcriptional profiles, and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this review, we discuss how macrophages regulate normal physiology and development and provide several examples of their pathophysiologic roles in disease. We define the “hallmarks” of macrophages performing particular functions, taking into account novel insights into the diversity of their lineages, identity, and regulation. This diversity is essential to understand because macrophages have emerged as important therapeutic targets in many important human diseases
    • 

    corecore