13 research outputs found

    A high resolution atlas of gene expression in the domestic sheep (Ovis aries)

    Get PDF
    Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages

    A divisive model of evidence accumulation explains uneven weighting of evidence over time

    No full text
    Divisive normalization has long been used to account for computations in various neural processes and behaviours. The model proposes that inputs into a neural system are divisively normalized by the system's total activity. More recently, dynamical versions of divisive normalization have been shown to account for how neural activity evolves over time in value-based decision making. Despite its ubiquity, divisive normalization has not been studied in decisions that require evidence to be integrated over time. Such decisions are important when the information is not all available at once. A key feature of such decisions is how evidence is weighted over time, known as the integration kernel. Here, we provide a formal expression for the integration kernel in divisive normalization, and show that divisive normalization quantitatively accounts for 133 human participants' perceptual decision making behaviour, performing as well as the state-of-the-art Drift Diffusion Model, the predominant model for perceptual evidence accumulation. Divisive normalization is thought to be a ubiquitous computation in the brain, but has not been studied in decisions that require integrating evidence over time. Here, the authors show in humans that dynamic divisive normalization accounts for the uneven weighting of perceptual evidence over time.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Literaturverzeichnis

    No full text
    corecore