171,118 research outputs found
Exploring Cities Using Agent-Based Models and GIS
Cities are faced with many problems such as urban sprawl, congestion, and segregation. They are also constantly changing. Computer modelling is becoming an increasingly important tool when examining how cities operate. Agent based models (ABM) allow for the testing of different hypotheses and theories for urban change, thus leading to a greater understanding of how cities work. This paper presents how ABMs can be developed by their integration with Geographical Information System (GIS). To highlight this, a generic ABM is presented. This is then applied to two model applications: a segregation model and a location model. Both models highlight how different theories can be incorporated into the generic model and demonstrate the importance of space in the modelling process. Cities are faced with many problems such as urban sprawl, congestion, and segregation. They are also constantly changing. Computer modelling is becoming an increasingly important tool when examining how cities operate. Agent based models (ABM) allow for the testing of different hypotheses and theories for urban change, thus leading to a greater understanding of how cities work. This paper presents how ABMs can be developed by their integration with Geographical Information System (GIS). To highlight this, a generic ABM is presented. This is then applied to two model applications: a segregation model and a location model. Both models highlight how different theories can be incorporated into the generic model and demonstrate the importance of space in the modelling process
The Repast Simulation/Modelling System for Geospatial Simulation
The use of simulation/modelling systems can simplify the implementation of agent-based models. Repast is one of the few simulation/modelling software systems that supports the integration of geospatial data especially that of vector-based geometries. This paper provides details about Repast specifically an overview, including its different development languages available to develop agent-based models. Before describing Repast’s core functionality and how models can be developed within it, specific emphasis will be placed on its ability to represent dynamics and incorporate geographical information. Once these elements of the system have been covered, a diverse list of Agent-Based Modelling (ABM) applications using Repast will be presented with particular emphasis on spatial applications utilizing Repast, in particular, those that utilize geospatial data
Construction noise database (phase 3): Evaluation of established measurement protocol
Executive Summary
1.1 The established method for obtaining noise emission data for the update of a database of noise from construction plant is examined.
1.2 The established measurement protocol involves the collection of plant noise measurements using a sound level meter, and the normalisation of the data to 10m.
1.3 The results of analytical and experimental investigations conclude that this measurement protocol is reasonably accurate and a practical method for the characterisation of plant sound power on-site for both stationary and dynamic activities
Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations
The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded. The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded
- …