1 research outputs found

    Influence of liposome encapsulated essential oils on properties of chitosan films

    Full text link
    [EN] The effect of the encapsulation of eugenol and cinnamon leaf essential oil (CLEO) in lecithin liposomes on the losses of these compounds during the chitosan film formation process by casting was evaluated. Film-forming dispersions and films with eugenol or CLEO (either free or encapsulated) were obtained and characterized. The content of eugenol in active films was quantified by means of solvent extraction and gas chromatograph analysis. The encapsulation of eugenol or CLEO in lecithin liposomes led to the films retaining 40% −50% of the incorporated eugenol, whereas only 1%−2% was retained when eugenol was incorporated by direct emulsification. Films with liposomes exhibited a lamellar microstructure which improved film extensibility and increased water vapour barrier capacity with respect to those with free emulsified compounds. Liposomes also modified the optical properties of the films, reducing their gloss, increasing colour saturation and making them redder in colour. The encapsulation of volatile active compounds in liposomes appears to be a good strategy for obtaining antimicrobial films with essential oils.The authors acknowledge the financial support provided by the Ministerio de Economía y Competitividad (Project AGL2013-42989-R). Cristina Valencia Sullca thanks the Programa Nacional de Becas del Perú (Pronabec) for the completion of her doctoral thesis.Valencia-Sullca, CE.; Jiménez Serrallé, M.; Jiménez Marco, A.; Atarés Huerta, LM.; Vargas, M.; Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International (Online). 65(8):979-987. https://doi.org/10.1002/pi.5143S979987658Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013). Physical properties and antioxidant capacity of starch–sodium caseinate films containing lipids. Journal of Food Engineering, 116(3), 695-702. doi:10.1016/j.jfoodeng.2013.01.010Zhai, M., Zhao, L., Yoshii, F., & Kume, T. (2004). Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymers, 57(1), 83-88. doi:10.1016/j.carbpol.2004.04.003Perdones, Á., Vargas, M., Atarés, L., & Chiralt, A. (2014). Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocolloids, 36, 256-264. doi:10.1016/j.foodhyd.2013.10.003Singh, G., Maurya, S., deLampasona, M. P., & Catalan, C. A. N. (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology, 45(9), 1650-1661. doi:10.1016/j.fct.2007.02.031Bajpai, V. K., Baek, K.-H., & Kang, S. C. (2012). Control of Salmonella in foods by using essential oils: A review. Food Research International, 45(2), 722-734. doi:10.1016/j.foodres.2011.04.052Shah, B., Davidson, P. M., & Zhong, Q. (2013). Nanodispersed eugenol has improved antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes in bovine milk. International Journal of Food Microbiology, 161(1), 53-59. doi:10.1016/j.ijfoodmicro.2012.11.020Sebaaly, C., Jraij, A., Fessi, H., Charcosset, C., & Greige-Gerges, H. (2015). Preparation and characterization of clove essential oil-loaded liposomes. Food Chemistry, 178, 52-62. doi:10.1016/j.foodchem.2015.01.067Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001Sánchez-González, L., Chiralt, A., González-Martínez, C., & Cháfer, M. (2011). Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. Journal of Food Engineering, 105(2), 246-253. doi:10.1016/j.jfoodeng.2011.02.028Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106Wu, J., Liu, H., Ge, S., Wang, S., Qin, Z., Chen, L., … Zhang, Q. (2015). The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocolloids, 43, 427-435. doi:10.1016/j.foodhyd.2014.06.017Imran, M., Revol-Junelles, A.-M., René, N., Jamshidian, M., Akhtar, M. J., Arab-Tehrany, E., … Desobry, S. (2012). Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocolloids, 29(2), 407-419. doi:10.1016/j.foodhyd.2012.04.010Zhang, H. Y., Arab Tehrany, E., Kahn, C. J. F., Ponçot, M., Linder, M., & Cleymand, F. (2012). Effects of nanoliposomes based on soya, rapeseed and fish lecithins on chitosan thin films designed for tissue engineering. Carbohydrate Polymers, 88(2), 618-627. doi:10.1016/j.carbpol.2012.01.007Jiménez, A., Sánchez-González, L., Desobry, S., Chiralt, A., & Tehrany, E. A. (2014). Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocolloids, 35, 159-169. doi:10.1016/j.foodhyd.2013.05.006Olasupo, N. A., Fitzgerald, D. J., Gasson, M. J., & Narbad, A. (2003). Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Letters in Applied Microbiology, 37(6), 448-451. doi:10.1046/j.1472-765x.2003.01427.xMcHUGH, T. H., AVENA-BUSTILLOS, R., & KROCHTA, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. doi:10.1111/j.1365-2621.1993.tb09387.xHutchings, J. B. (1999). Food Colour and Appearance. doi:10.1007/978-1-4615-2373-4Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. doi:10.1016/j.tifs.2011.02.004Leceta, I., Guerrero, P., & de la Caba, K. (2013). Functional properties of chitosan-based films. Carbohydrate Polymers, 93(1), 339-346. doi:10.1016/j.carbpol.2012.04.031Pérez-Gago, M. B., & Krochta, J. M. (2001). Lipid Particle Size Effect on Water Vapor Permeability and Mechanical Properties of Whey Protein/Beeswax Emulsion Films. Journal of Agricultural and Food Chemistry, 49(2), 996-1002. doi:10.1021/jf000615fFabra, M. J., Talens, P., & Chiralt, A. (2008). Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid–beeswax mixtures. Journal of Food Engineering, 85(3), 393-400. doi:10.1016/j.jfoodeng.2007.07.022Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2009). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocolloids, 23(8), 2102-2109. doi:10.1016/j.foodhyd.2009.05.006McHugh, T. H., & Krochta, J. M. (1994). Water vapor permeability properties of edible whey protein-lipid emulsion films. Journal of the American Oil Chemists’ Society, 71(3), 307-312. doi:10.1007/bf02638058Ma, X., Chang, P. R., & Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3), 369-375. doi:10.1016/j.carbpol.2007.09.002Fabra, M. J., Talens, P., & Chiralt, A. (2010). Water sorption isotherms and phase transitions of sodium caseinate–lipid films as affected by lipid interactions. Food Hydrocolloids, 24(4), 384-391. doi:10.1016/j.foodhyd.2009.11.004Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules, 74, 289-296. doi:10.1016/j.ijbiomac.2014.11.046Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166. doi:10.1016/j.foodchem.2010.02.033Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 23(3), 676-683. doi:10.1016/j.foodhyd.2008.04.015Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075Van Roon, A., Parsons, J. R., & Govers, H. A. . (2002). Gas chromatographic determination of vapour pressure and related thermodynamic properties of monoterpenes and biogenically related compounds. Journal of Chromatography A, 955(1), 105-115. doi:10.1016/s0021-9673(02)00200-5Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21(6), 703-714. doi:10.1016/j.fm.2004.02.00
    corecore