13 research outputs found

    Keratinocyte growth factor promotes melanosome transfer to keratinocytes.

    No full text
    Melanogenesis and melanosome transfer from the melanocytes to the neighboring keratinocytes are induced by ultraviolet radiation and modulated by autocrine and paracrine factors. Keratinocyte growth factor (KGF/fibroblast growth factor (FGF)7) is a paracrine mediator of human keratinocyte growth and differentiation. We evaluated the influence of KGF on melanosome transfer in co-cultures of keratinocytes and melanocytes. Immunofluorescence analysis using anti-tyrosinase and anti-human cytokeratin antibodies, phagocytic assays using fluorescent latex beads, and ultrastructural analysis indicated that KGF is able to induce melanosome transfer acting only on the recipient keratinocytes and as a consequence of a general role of KGF in the promotion of the phagocytic process. Inhibition of proteinase-activated receptor-2, to block the Rho-dependent phagocytic pathway, or of the Src family tyrosine kinases, to inhibit the Rac-dependent pathway, showed that KGF promotes phagocytosis through both mechanisms. Increased expression of the KGF receptor (KGFR) on the keratinocytes by transfection led to increased phagocytosis of latex beads following KGF treatment, suggesting that the KGF effect is directly mediated by KGFR expression and activation. Moreover, confocal microscopic analysis revealed that KGFR localize in phagosomes during KGF-induced phagocytosis, suggesting a direct role of the receptor in regulating both the early steps of uptake and the intracellular traffic of the phagosomes

    Melanosome transfer promoted by keratinocyte growth factor in light and dark skin-derived keratinocytes.

    Get PDF
    The transfer of melanin from melanocytes to keratinocytes is upregulated by UV radiation and modulated by autocrine and paracrine factors. Among them, the keratinocyte growth factor (KGF/FGF7) promotes melanosome transfer acting on the recipient keratinocytes through stimulation of the phagocytic process. To search for possible differences in the melanosome uptake of keratinocytes from different skin color, we analyzed the uptake kinetics and distribution pattern of fluorescent latex beads in primary cultures of light and dark skin-derived keratinocytes stimulated with KGF and we compared the direct effect of KGF on the melanosome transfer in co-cultures of human primary melanocytes with light and dark keratinocytes. KGFpromoted melanosome transfer was more significant in light keratinocytes compared to dark, due to an increased expression of KGF receptor in light skin keratinocytes. Colocalization studies performed by confocal microscopy using FITC-dextran as a phagocytic marker and fluorescent beads as well as inhibition of particle uptake by cytochalasin D, revealed that beads internalization induced by KGF occurs via actin-dependent phagocytosis. 3D image reconstruction by fluorescence microscopy and ultrastructural analysis through transmission electron microscopy showed differences in the distribution pattern of the beads in light and dark keratinocytes, consistent with the different melanosome distribution in human skin

    A kindred with familial progressive hyperpigmentation-like disorder: implication of fibroblast-derived growth factors in pigmentation

    No full text
    Two patients with a generalized, progressive dyschromatosis disorder are described and investigated as a model to study the role of fibroblast-derived mediators on skin pigmentation. The patients (father and daughter) had had a widespread hyperpigmentation since early life which then progressively worsened with the appearance of hyperpigmented macules, caf\ue9-au-lait macules and freckles, also involving the lips, palms and soles, intermixed with small hypopigmented spots. These features resembled those of familial progressive hyperpigmentation (FPH). Histology revealed a normal epidermis with pronounced keratinocyte hyperpigmentation and the presence of dermal melanophages. Ultrastructural analysis showed basal and suprabasal keratinocytes enriched in melanosome complexes. Immunohistochemical staining displayed an increased expression of hepatocyte growth factor (HGF), stem cell factor (SCF) and keratinocyte growth factor (KGF) in fibroblast-like cells of the upper dermis in hyperpigmented lesions of both patients, compared to control healthy skin. Our data suggest that a persistent activation of fibroblasts abnormally stimulating melanocyte functions is involved in hyperpigmentation disorders

    Azelaic acid modulates the inflammatory response in normal human keratinocytes through PPARgamma activation.

    No full text
    Azelaic acid (AzA), a nine-carbon dicarboxylic acid, is an agent for the topical treatment of acne. It has also been shown to be effective in rosacea; however, the mechanism of action has not been clarified. Because inflammation is a common feature of both conditions, we investigated the effects of azelaic acid on the inflammatory response of normal human keratinocytes to ultraviolet B light, which is a photosensitizer agent in rosacea. AzA, at 20 mM, a concentration achievable following topical application of a 15\% gel, suppresses ultraviolet B light-induced interleukins-1beta, -6 and tumor necrosis factor-alpha mRNA expression and protein secretion. Mechanistically, azelaic acid significantly reduced the ultraviolet B light-induced nuclear translocation of nuclear factor kB p65 subunit and the phosphorylation of the p38 mitogen and stress-activated protein kinase. Moreover, as peroxisome proliferators-activated receptor gamma, (PPARgamma) which has a crucial role in the control of inflammation, is activated by fatty acids and products of lipid peroxidation, we further investigated the effect of azelaic acid on the expression of this nuclear receptor. AzA induced peroxisome proliferators-activated receptor-gamma mRNA and its transcriptional activity. The PPARgamma antagonist GW9662 abrogated the inhibitory effects of AzA on the UVB-induced pro-inflammatory cytokines release and on the cell proliferation. Our study provides new insights into the molecular mechanisms of the activity of azelaic acid and lands additional evidences for its therapeutic effects on inflammatory skin diseases, such as rosacea

    Preclinical studies of a specific PPARγ modulator in the control of skin inflammation

    Get PDF
    Peroxisome proliferator-activated receptor γ (PPARγ) antagonizes inflammatory signals by interfering with NF-κB nuclear translocation. Consistently, PPARγ agonists have been proposed in various inflammatory skin disorders, but their wide use has been limited by severe side effects. Classes of compounds with specific PPARγ agonism have been designed to selectively target inflammatory pathways. Among these compounds, GED-0507-34L has been developed and recently used in phase II clinical trials for inflammatory bowel diseases. This study was aimed at assessing the role of GED-0507-34L in preclinical models of inflammatory skin diseases. The compound modulated PPARγ function and suppressed the inflammatory process inhibiting NF-κB nuclear translocation with the consequent reduction of inflammatory cytokines expression, such as IL-6, IL-8, IL-12, IL-21, IL-23, tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) in normal human keratinocytes and lymphocytes treated with lipopolysaccharide (LPS) or TNF-α. Moreover, an altered proliferation and expression of differentiation markers induced by TNF-α were also counteracted. In psoriasis-like skin lesions elicited in mice by IL-21, topical application of GED-0507-34L reduced cellular infiltrate and epidermal hyperplasia, normalizing the differentiation process. The results indicate that GED-0507-34L possesses anti-inflammatory properties useful for the management of patients with inflammatory skin diseases including psoriasis. Phase I trial on patients is ongoing

    The Eumelanin Intermediate 5,6-Dihydroxyindole-2-Carboxylic Acid Is a Messenger in the Cross-Talk among Epidermal Cells

    No full text
    Interest in colorless intermediates of melanocyte metab. has traditionally been related to their role as melanin precursors, though several lines of evidence scattered in the literature suggested that these compds. may exert an antioxidant and protective function per se unrelated to pigment synthesis. Herein, we disclose the remarkable protective and differentiating effects of 5,6-dihydroxyindole-2-carboxylic acid (DHICA), a diffusible dopachrome tautomerase (DCT)-dependent eumelanin intermediate, on primary cultures of human keratinocytes. At micromolar concns., DHICA induced: (a) time- and dose-dependent redn. of cell proliferation without concomitant toxicity; (b) enhanced expression of early (spinous keratins K1 and K10 and envelope protein involucrin) and late (loricrin and filaggrin) differentiation markers; (c) increased activities and expression of antioxidant enzymes; and (d) decreased cell damage and apoptosis following UVA exposure. The hitherto unrecognized role of DHICA as an antiproliferative, protective, and antiapoptotic endogenous cell messenger points to a reappraisal of the biol. functions of melanocytes and DCT in skin homeostasis and photoprotection beyond the mere provision of melanin pigments, and provides, to our knowledge, a previously unreported possible explanation to the higher resistance of the dark-skinned eumelanic phenotypes to sunburn and skin cancer

    Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo

    No full text
    Background Cutaneous pigmentation is regulated by a complex melanogenic network in which both keratinocytes and fibroblasts synthesize growth factors and cytokines. Solar lentigo (SL) is characterized by hyperpigmented lesions occurring on photodamaged skin areas. Despite the association of SL to ultraviolet (UV) exposure, the mechanisms underlying the development of these spots are not completely defined. Objectives To analyse the involvement of the fibroblast-derived growth factors, hepatocyte growth factor (HGF), keratinocyte growth factor (KGF) and stem cell factor (SCF) in SL hyperpigmentation; to evaluate whether the photoageing process occurring in fibroblasts could be responsible for the altered expression of these cytokines; and to investigate a new possible role of KGF in regulating pigmentation through the specific induction of melanogenic cytokines by keratinocytes. Methods We performed immunohistochemical analysis of HGF, KGF and SCF on SL biopsies. We analysed the mRNA expression of these cytokines using an in vitro model of photoageing induced on fibroblasts. Finally, we evaluated the effects of KGF on the expression of melanogenic cytokines at the mRNA and protein levels on keratinocytes. Results We found positive staining for HGF, KGF and SCF in the upper dermis of SL lesions and a significant induction of the three cytokines in photoaged fibroblasts. We also demonstrated the contribution of KGF to pigmentation, showing its ability specifically to modulate the expression of SCF in keratinocytes. Conclusions Fibroblasts may be persistently activated by UV exposure to release melanogenic growth factors; this inducible cytokine network acts both directly and indirectly through keratinocytes and may contribute to the hyperpigmentation of SL

    The Eumelanin Intermediate 5,6-Dihydroxyindole-2-Carboxylic Acid Is a Messenger in the Cross-Talk among Epidermal Cells

    No full text
    Interest in colorless intermediates of melanocyte metab. has traditionally been related to their role as melanin precursors, though several lines of evidence scattered in the literature suggested that these compds. may exert an antioxidant and protective function per se unrelated to pigment synthesis. Herein, we disclose the remarkable protective and differentiating effects of 5,6-dihydroxyindole-2-carboxylic acid (DHICA), a diffusible dopachrome tautomerase (DCT)-dependent eumelanin intermediate, on primary cultures of human keratinocytes. At micromolar concns., DHICA induced: (a) time- and dose-dependent redn. of cell proliferation without concomitant toxicity; (b) enhanced expression of early (spinous keratins K1 and K10 and envelope protein involucrin) and late (loricrin and filaggrin) differentiation markers; (c) increased activities and expression of antioxidant enzymes; and (d) decreased cell damage and apoptosis following UVA exposure. The hitherto unrecognized role of DHICA as an antiproliferative, protective, and antiapoptotic endogenous cell messenger points to a reappraisal of the biol. functions of melanocytes and DCT in skin homeostasis and photoprotection beyond the mere provision of melanin pigments, and provides, to our knowledge, a previously unreported possible explanation to the higher resistance of the dark-skinned eumelanic phenotypes to sunburn and skin cancer
    corecore