31 research outputs found

    The Impact of Personality Traits Towards the Intention to Adopt Mobile Learning

    Get PDF
    Mobile devices have become increasingly more common in the digitally connected world. Mobile learning as a model of e-learning refers to the acquisition of knowledge & skills utilizing mobile technologies. The aim of this study is to identify the extrinsic influential factors for the adoption of mobile learning. This study proposes the use of an extended technology acceptance model (TAM) theory that includes variables of personality traits such as perceived enjoyment and computer self-efficiency. The participants of this study were 351 students at University Technology Malaysia who had experiences in e-learning. The study found that perceived usefulness as an extrinsic factor has the highest influence on students’ intention to adopt mobile learning through an investigation of technology acceptance toward mobile learning. Personality traits such as perceived enjoyment and self-efficacy have impact on behavior intention to adopt mobile learning

    Characterization and review of MTHFD1 deficiency: four new patients, cellular delineation and response to folic and folinic acid treatment

    Full text link
    In the folate cycle MTHFD1, encoded by MTHFD1, is a trifunctional enzyme containing 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase and 10-formyltetrahydrofolate synthetase activity. To date, only one patient with MTHFD1 deficiency, presenting with hyperhomocysteinemia, megaloblastic anaemia, hemolytic uremic syndrome (HUS) and severe combined immunodeficiency, has been identified (Watkins et al J Med Genet 48:590-2, 2011). We now describe four additional patients from two different families. The second patient presented with hyperhomocysteinemia, megaloblastic anaemia, HUS, microangiopathy and retinopathy; all except the retinopathy resolved after treatment with hydroxocobalamin, betaine and folinic acid. The third patient developed megaloblastic anaemia, infection, autoimmune disease and moderate liver fibrosis but not hyperhomocysteinemia, and was successfully treated with a regime that included and was eventually reduced to folic acid. The other two, elder siblings of the third patient, died at 9 weeks of age with megaloblastic anaemia, infection and severe acidosis and had MTFHD1 deficiency diagnosed retrospectively. We identified a missense mutation (c.806C > T, p.Thr296Ile) and a splice site mutation (c.1674G > A) leading to exon skipping in the second patient, while the other three harboured a missense mutation (c.146C > T, p.Ser49Phe) and a premature stop mutation (c.673G > T, p.Glu225*), all of which were novel. Patient fibroblast studies revealed severely reduced methionine formation from [(14)C]-formate, which did not increase in cobalamin supplemented culture medium but was responsive to folic and folinic acid. These additional cases increase the clinical spectrum of this intriguing defect, provide in vitro evidence of disturbed methionine synthesis and substantiate the effectiveness of folic or folinic acid treatment

    Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation

    No full text
    Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2−/−). Although normal until postnatal day 8, Tk2−/− mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2−/− mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2−/− heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2−/− heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency

    Effects of tryptophan deficiency on prepulse inhibition of the acoustic startle in rats

    No full text
    RATIONALE: Serotonin (5-HT) plays a key role in the pathophysiology of psychotic disorders, presumably through a modulation of dopamine (DA) transmission. Reduction of 5-HT signaling has been suggested to enhance dopaminergic responses in animal models of psychosis. An intriguing naturalistic strategy to reduce 5-HT brain content is afforded by the dietary restriction to its precursor, l-tryptophan (TRP). OBJECTIVE: We investigated the impact of a TRP-deficient diet in rats on the prepulse inhibition of the startle (PPI), a measure of sensorimotor gating which is typically impaired by psychotomimetic substances. MATERIALS AND METHODS: After either short-term (6 h) or long-term (14 days) TRP deprivation, rats were tested for startle reflex and PPI. Moreover, we assessed the impact of both TRP deprivation regimens on PPI reduction induced by the psychotomimetic substance d-amphetamine (AMPH). RESULTS: Both TRP-deficient regimens failed to significantly affect PPI responses. However, chronic, but not short-term, TRP-deficient diet induced a significant sensitization to the effects of AMPH (1.25-2.5 mg/kg, subcutaneous). The enhanced predisposition to PPI disruption elicited by prolonged TRP deprivation was completely reversed 24 h after reinstatement of TRP in the diet, as well as pretreatment with antipsychotic drugs haloperidol (0.1 mg/kg, intraperitoneal) and clozapine (5 mg/kg, intraperitoneal), which exert their therapeutic action mostly through blockade of DA D(2) receptors. CONCLUSIONS: The present results confirm and extend previous findings on the impact of serotonergic signaling in the modulation of DA transmission in schizophrenia and point to chronic TRP deprivation as a potential model of environmental manipulation that may produce a sensitization to psychotic-like symptoms induced by dopaminergic activation
    corecore