24 research outputs found

    Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC) - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy.</p> <p>Methods</p> <p>To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC.</p> <p>Results</p> <p>The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression.</p> <p>Conclusion</p> <p>This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that thymosin-β4 may have a role in chondrosarcoma metastasis.</p

    Splitting hairs: differentiating between entomological activity, taphonomy, and sharp force trauma on hair

    No full text
    Purpose The analysis of hair can provide useful information for the correct evaluation of forensic cases, but studies of trauma on hair are extremely rare. Hair may present lesions caused by traumatic events or by animals: in fact, signs of sharp force weapons on hair may provide important information for the reconstruction of the manner of death, and, for example, may suggest fetishist practice. This study stemmed from a judicial case where it was fundamental to distinguish between sharp force lesions and insect activity on hair. Methods In order to highlight differences between sharp force lesions and insect feeding activity, different experiments were performed with high power microscopy: hair samples were subjected to several lesions by blunt and sharp force trauma; then samples were used as pabulum for two taxa of insects: the common clothes moth (Tineola bisselliella Lepidoptera, Tineidae) and the carpet beetle (Anthrenus sp., Coleoptera, Dermestidae). Hairs were examined from a macroscopic and microscopic point of view by stereomicroscopy and scanning electron microscopy (SEM): the morphological characteristics of the lesions obtained from the different experimental samples were compared. Results Results show that sharp force trauma produces lesions with regular edges, whereas insects leave concave lesions caused by their “gnawing” activity. These two types of lesions are easily distinguishable from breaking and tearing using SEM. Conclusions This study demonstrates that insect activity leaves very specific indications on hair and sheds some light on different hair lesions that may be found in forensic case
    corecore