22 research outputs found

    Obesity related methylation changes in DNA of peripheral blood leukocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite evidence linking obesity to impaired immune function, little is known about the specific mechanisms. Because of emerging evidence that immune responses are epigenetically regulated, we hypothesized that DNA methylation changes are involved in obesity induced immune dysfunction and aimed to identify these changes.</p> <p>Method</p> <p>We conducted a genome wide methylation analysis on seven obese cases and seven lean controls aged 14 to 18 years from extreme ends of the obesity distribution and performed further validation of six CpG sites from six genes in 46 obese cases and 46 lean controls aged 14 to 30 years.</p> <p>Results</p> <p>In comparison with the lean controls, we observed one CpG site in the UBASH3A gene showing higher methylation levels and one CpG site in the TRIM3 gene showing lower methylation levels in the obese cases in both the genome wide step (<it>P </it>= 5 × 10<sup>-6 </sup>and <it>P </it>= 2 × 10<sup>-5 </sup>for the UBASH3A and the TRIM3 gene respectively) and the validation step (<it>P </it>= 0.008 and <it>P </it>= 0.001 for the UBASH3A and the TRIM3 gene respectively).</p> <p>Conclusions</p> <p>Our results provide evidence that obesity is associated with methylation changes in blood leukocyte DNA. Further studies are warranted to determine the causal direction of this relationship as well as whether such methylation changes can lead to immune dysfunction.</p> <p>See commentary: <url>http://www.biomedcentral.com/1741-7015/8/88/abstract</url></p

    Differentiation of normal and cancer cells induced by sulfhydryl reduction: biochemical and molecular mechanisms

    Get PDF
    We examined the morphological, biochemical and molecular outcome of a nonspecific sulfhydryl reduction in cells, obtained by supplementation of N-acetyl-L-cysteine (NAC) in a 0.1-10 mM concentration range. In human normal primary keratinocytes and in colon and ovary carcinoma cells we obtained evidences for: (i) a dose-dependent inhibition of proliferation without toxicity or apoptosis; (ii) a transition from a proliferative mesenchymal morphology to cell-specific differentiated structures; (iii) a noticeable increase in cell-cell and cell-substratum junctions; (iv) a relocation of the oncogenic beta-catenin at the cell-cell junctions; (v) inhibition of microtubules aggregation; (vi) upregulation of differentiation-related genes including p53, heat shock protein 27 gene, N-myc downstream-regulated gene 1, E-cadherin, and downregulation of cyclooxygenase-2; (vii) inhibition of c-Src tyrosine kinase. In conclusion, a thiol reduction devoid of toxicity as that operated by NAC apparently leads to terminal differentiation of normal and cancer cells through a pleiade of converging mechanisms, many of which are targets of the recently developed differentiation therapy

    Phototrophic biofilms and their potential applications

    Get PDF
    Phototrophic biofilms occur on surfaces exposed to light in a range of terrestrial and aquatic environments. Oxygenic phototrophs like diatoms, green algae, and cyanobacteria are the major primary producers that generate energy and reduce carbon dioxide, providing the system with organic substrates and oxygen. Photosynthesis fuels processes and conversions in the total biofilm community, including the metabolism of heterotrophic organisms. A matrix of polymeric substances secreted by phototrophs and heterotrophs enhances the attachment of the biofilm community. This review discusses the actual and potential applications of phototrophic biofilms in wastewater treatment, bioremediation, fish-feed production, biohydrogen production, and soil improvement

    Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions

    Full text link

    Understanding How Microplastics Affect Marine Biota on the Cellular Level Is Important for Assessing Ecosystem Function: A Review

    Get PDF
    Plastic has become indispensable for human life. When plastic debris is discarded into waterways, these items can interact with organisms. Of particular concern are microscopic plastic particles (microplastics) which are subject to ingestion by several taxa. This review summarizes the results of cutting-edge research about the interactions between a range of aquatic species and microplastics, including effects on biota physiology and secondary ingestion. Uptake pathways via digestive or ventilatory systems are discussed, including (1) the physical penetration of microplastic particles into cellular structures, (2) leaching of chemical additives or adsorbed persistent organic pollutants (POPs), and (3) consequences of bacterial or viral microbiota contamination associated with microplastic ingestion. Following uptake, a number of individual-level effects have been observed, including reduction of feeding activities, reduced growth and reproduction through cellular modifications, and oxidative stress. Microplastic-associated effects on marine biota have become increasingly investigated with growing concerns regarding human health through trophic transfer. We argue that research on the cellular interactions with microplastics provide an understanding of their impact to the organisms’ fitness and, therefore, its ability to sustain their functional role in the ecosystem. The review summarizes information from 236 scientific publications. Of those, only 4.6% extrapolate their research of microplastic intake on individual species to the impact on ecosystem functioning. We emphasize the need for risk evaluation from organismal effects to an ecosystem level to effectively evaluate the effect of microplastic pollution on marine environments. Further studies are encouraged to investigate sublethal effects in the context of environmentally relevant microplastic pollution conditions

    Microalgae as second generation biofuel. A review

    Full text link

    Study of the X-ray Pulsar XTE J1946+274 with NuSTAR

    No full text
    We present the results of our spectral and timing analysis of the emission from the transient Xray pulsar XTE J1946+274 based on the simultaneous NuSTAR and Swift/XRT observations in the broad energy range 0.3-79 keV carried out in June 2018 during a bright outburst. Our spectral analysis has confirmed the presence of a cyclotron absorption line at an energy not approximate to 38 keV in both averaged and phaseresolved spectra of the source. Phase-resolved spectroscopy has also allowed the variation in spectral parameters with neutron star rotation phase, whose period is similar or equal to 15.755 s, to be studied. The energy of the cyclotron line is shown to change significantly (from similar or equal to 34 to similar to 39 keV) on the scale of a pulse, with the line width and optical depth also exhibiting variability. The observed behavior of the cyclotron line parameters can be interpreted in terms of the model of the reflection of emission from a small accretion column (the source's luminosity at the time of its observations was similar to 3 x 10(37) erg s(-1)) off the neutron star surface. The equivalent width of the iron line has been found to also change significantly with pulse phase. The time delay between the pulse and equivalent width profiles can be explained by the reflection of neutron star emission from the outer accretion disk regions

    Phenotypic correlations, G x E interactions and broad sense heritability analysis of grain and flour quality characteristics in high latitude spring bread wheats from Kazakhstan and Siberia

    No full text
    Grain and flour samples of 42 high latitude spring bread wheat genotypes from Kazakhstan and Siberia evaluated in a multi-location trial were analyzed for grain concentrations of protein, zinc (Zn) and iron (Fe), as well as flour quality characteristics. The genotypes showed high grain protein concentrations (14-19%), but low dough strength was a common feature for most of them. Significant positive correlations were found between grain protein and flour protein, gluten, gliadin, gli/glu ratio, Zn, and Fe contents. Grain protein was also correlated positively with hardness, sedimentation, farinograph dough development time (DDT), stability time and ash content. Grain Fe concentration was positively associated with sedimentation, stability time, water absorption and valorimeter value, suggesting that improvements in micronutrient concentrations in the grain parallels enhancement in gluten strength. Interestingly, glutenin content correlated negatively with the concentrations of grain and flour protein, gluten, and minerals; and also with gluten deformation index (IDK), DDT, and stability time. Conversely, gliadin content showed strong positive correlations with the concentrations of grain and flour protein, gluten, and minerals. Gliadin also correlated positively, but in lesser magnitude, with DDT, stability time and IDK. Environment and GxE interaction were important sources of variation for some quality characteristics. This was reflected in the low broad sense heritability (H) values for traits related to flour strength, such as sedimentation, IDK, stability time and gliadin content. Breeding strategies, including three testing locations at the advanced selection stages, are adequate for the enhancement of most of the quality traits, but faster improvement in flour strength could be achieved with a larger number of locations
    corecore