82 research outputs found
Single neuron transcriptomics identify SRSF/ SR protein B52 as a regulator of axon growth and Choline acetyltransferase splicing.
We removed single identified neurons from living Drosophila embryos to gain insight into the transcriptional control of developing neuronal networks. The microarray analysis of the transcriptome of two sibling neurons revealed seven differentially expressed transcripts between both neurons (threshold: log(2)1.4). One transcript encodes the RNA splicing factor B52. Loss of B52 increases growth of axon branches. B52 function is also required for Choline acetyltransferase (ChAT ) splicing. At the end of embryogenesis, loss of B52 function impedes splicing of ChAT, reduces acetylcholine synthesis, and extends the period of uncoordinated muscle twitches during larval hatching. ChAT regulation by SRSF proteins may be a conserved feature since changes in SRSF5 expression and increased acetylcholine levels in brains of bipolar disease patients have been reported recently
Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk
An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition
Association of Coagulation Activation with Clinical Complications in Sickle Cell Disease
Background: The contribution of hypercoagulability to the pathophysiology of sickle cell disease (SCD) remains poorly defined. We sought to evaluate the association of markers of coagulation and platelet activation with specific clinical complications and laboratory variables in patients with SCD. Design and Methods: Plasma markers of coagulation activation (D-dimer and TAT), platelet activation (soluble CD40 ligand), microparticle-associated tissue factor (MPTF) procoagulant activity and other laboratory variables were obtained in a cohort of patients with SCD. Tricuspid regurgitant jet velocity was determined by Doppler echocardiography and the presence/history of clinical complications was ascertained at the time of evaluation, combined with a detailed review of the medical records. Results: No significant differences in the levels of D-dimer, TAT, soluble CD40 ligand, and MPTF procoagulant activity were observed between patients in the SS/SD/Sb 0 thalassemia and SC/Sb + thalassemia groups. Both TAT and D-dimer were significantly correlated with measures of hemolysis (lactate dehydrogenase, indirect bilirubin and hemoglobin) and soluble vascular cell adhesion molecule-1. In patients in the SS/SD/Sb 0 thalassemia group, D-dimer was associated with a history of stroke (p = 0.049), TAT was associated with a history of retinopathy (p = 0.0176), and CD40 ligand was associated with the frequency of pain episodes (p = 0.039). In multivariate analyses, D-dimer was associated with reticulocyte count, lactat
The caudo-ventral pallium is a novel pallial domain expressing Gdf10 and generating Ebf3-positive neurons of the medial amygdala
In rodents, the medial nucleus of the amygdala receives direct inputs from the accessory olfactory bulbs and is mainly implicated in pheromone-mediated reproductive and defensive behaviors. The principal neurons of the medial amygdala are GABAergic neurons generated principally in the caudo-ventral medial ganglionic eminence and preoptic area. Beside GABAergic neurons, the medial amygdala also contains glutamatergic Otp-expressing neurons cells generated in the lateral hypothalamic neuroepithelium and a non-well characterized Pax6-positive population. In the present work, we describe a novel glutamatergic Ebf3-expressing neuronal subpopulation distributed within the periphery of the postero-ventral medial amygdala. These neurons are generated in a pallial domain characterized by high expression of Gdf10. This territory is topologically the most caudal tier of the ventral pallium and accordingly, we named it Caudo-Ventral Pallium (CVP). In the absence of Pax6, the CVP is disrupted and Ebf3-expressing neurons fail to be generated. Overall, this work proposes a novel model of the neuronal composition of the medial amygdala and unravels for the first time a new novel pallial subpopulation originating from the CVP and expressing the transcription factor Ebf3.This work was supported by Grants of the French National Research Agency (Agence Nationale de la Recherche; ANR) [ANR-13-BSV4-0011] and by the French Government through the ‘Investments for the Future’ LABEX SIGNALIFE [ANR-11-LABX-0028-01] to M.S., by the Spanish Government (BFU2007-60263 and BFU2010-17305) to A.F, and by the Medical Research Council (MR/K013750/1) to T.T. N.R.-R. is funded by a postdoctoral fellowship from the Ville de Nice, France (“Aide Individuelle aux Jeunes Chercheurs 2016”).Peer reviewe
A role for pharmacists in community-based post-discharge warfarin management: protocol for the 'the role of community pharmacy in post hospital management of patients initiated on warfarin' study
<p>Abstract</p> <p>Background</p> <p>Shorter periods of hospitalisation and increasing warfarin use have placed stress on community-based healthcare services to care for patients taking warfarin after hospital discharge, a high-risk period for these patients. A previous randomised controlled trial demonstrated that a post-discharge service of 4 home visits and point-of-care (POC) International Normalised Ratio (INR) testing by a trained pharmacist improved patients' outcomes. The current study aims to modify this previously trialled service model to implement and then evaluate a sustainable program to enable the smooth transition of patients taking warfarin from the hospital to community setting.</p> <p>Methods/Design</p> <p>The service will be trialled in 8 sites across 3 Australian states using a prospective, controlled cohort study design. Patients discharged from hospital taking warfarin will receive 2 or 3 home visits by a trained 'home medicines review (HMR)-accredited' pharmacist in their 8 to 10 days after hospital discharge. Visits will involve a HMR, comprehensive warfarin education, and POC INR monitoring in collaboration with patients' general practitioners (GPs) and community pharmacists. Patient outcomes will be compared to those in a control, or 'usual care', group. The primary outcome measure will be the proportion of patients experiencing a major bleeding event in the 90 days after discharge. Secondary outcome measures will include combined major bleeding and thromboembolic events, death, cessation of warfarin therapy, INR control at 8 days post-discharge and unplanned hospital readmissions from any cause. Stakeholder satisfaction will be assessed using structured postal questionnaire mailed to patients, GPs, community pharmacists and accredited pharmacists at the completion of their study involvement.</p> <p>Discussion</p> <p>This study design incorporates several aspects of prior interventions that have been demonstrated to improve warfarin management, including POC INR testing, warfarin education and home visits by trained pharmacists. It faces several potential challenges, including the tight timeframe for patient follow-up in the post-discharge period. Its strengths lie in a strong multidisciplinary team and the utilisation of existing healthcare frameworks. It is hoped that this study will provide the evidence to support the national roll-out of the program as a new Australian professional community pharmacy service.</p> <p>Trial Registration</p> <p>Australian New Zealand Clinical Trials Registry Number <a href="http://www.anzctr.org.au/trial_view.aspx?ID=82959">12608000334303</a>.</p
Sequencing and Comparative Genome Analysis of Two Pathogenic Streptococcus gallolyticus Subspecies: Genome Plasticity, Adaptation and Virulence
Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I) and S. pasteurianus ATCC 43144 (biotype II.2). The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92%) and 1607 (86%) of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS) and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops
Comparative study of Factor Xa fluorogenic substrates and their influence on the quantification of LMWHs
Substantial fibrin amyloidogenesis in type 2 diabetes assessed using amyloid-selective fluorescent stains
Italian Society of Clinical Pathology and Laboratory Medicine (SIPMeL)—guidelines for laboratory detection of Lupus Anticoagulant (LA)
- …
