43 research outputs found

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    miR-132 Enhances Dendritic Morphogenesis, Spine Density, Synaptic Integration, and Survival of Newborn Olfactory Bulb Neurons

    Get PDF
    An array of signals regulating the early stages of postnatal subventricular zone (SVZ) neurogenesis has been identified, but much less is known regarding the molecules controlling late stages. Here, we investigated the function of the activity-dependent and morphogenic microRNA miR-132 on the synaptic integration and survival of olfactory bulb (OB) neurons born in the neonatal SVZ. In situ hybridization revealed that miR-132 expression occurs at the onset of synaptic integration in the OB. Using in vivo electroporation we found that sequestration of miR-132 using a sponge-based strategy led to a reduced dendritic complexity and spine density while overexpression had the opposite effects. These effects were mirrored with respective changes in the frequency of GABAergic and glutamatergic synaptic inputs reflecting altered synaptic integration. In addition, timely directed overexpression of miR-132 at the onset of synaptic integration using an inducible approach led to a significant increase in the survival of newborn neurons. These data suggest that miR-132 forms the basis of a structural plasticity program seen in SVZ-OB postnatal neurogenesis. miR-132 overexpression in transplanted neurons may thus hold promise for enhancing neuronal survival and improving the outcome of transplant therapies

    H3.3(K27M) Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas

    Get PDF
    Gain-of-function mutations in histone 3 (H3) variants are found in a substantial proportion of pediatric high-grade gliomas (pHGG), often in association with TP53 loss and platelet-derived growth factor receptor alpha (PDGFRA) amplification. Here, we describe a somatic mouse model wherein H3.3K27M and Trp53 loss alone are sufficient for neoplastic transformation if introduced in utero. H3.3K27M-driven lesions are clonal, H3K27me3 depleted, Olig2 positive, highly proliferative, and diffusely spreading, thus recapitulating hallmark molecular and histopathological features of pHGG. Addition of wild-type PDGFRA decreases latency and increases tumor invasion, while ATRX knockdown is associated with more circumscribed tumors. H3.3K27M-tumor cells serially engraft in recipient mice, and preliminary drug screening reveals mutation-specific vulnerabilities. Overall, we provide a faithful H3.3K27M-pHGG model which enables insights into oncohistone pathogenesis and investigation of future therapies

    NO Dioxygenase Activity in Hemoglobins Is Ubiquitous In Vitro, but Limited by Reduction In Vivo

    Get PDF
    Genomics has produced hundreds of new hemoglobin sequences with examples in nearly every living organism. Structural and biochemical characterizations of many recombinant proteins reveal reactions, like oxygen binding and NO dioxygenation, that appear general to the hemoglobin superfamily regardless of whether they are related to physiological function. Despite considerable attention to “hexacoordinate” hemoglobins, which are found in nearly every plant and animal, no clear physiological role(s) has been assigned to them in any species. One popular and relevant hypothesis for their function is protection against NO. Here we have tested a comprehensive representation of hexacoordinate hemoglobins from plants (rice hemoglobin), animals (neuroglobin and cytoglobin), and bacteria (Synechocystis hemoglobin) for their abilities to scavenge NO compared to myoglobin. Our experiments include in vitro comparisons of NO dioxygenation, ferric NO binding, NO-induced reduction, NO scavenging with an artificial reduction system, and the ability to substitute for a known NO scavenger (flavohemoglobin) in E. coli. We conclude that none of these tests reveal any distinguishing predisposition toward a role in NO scavenging for the hxHbs, but that any hemoglobin could likely serve this role in the presence of a mechanism for heme iron re-reduction. Hence, future research to test the role of Hbs in NO scavenging would benefit more from the identification of cognate reductases than from in vitro analysis of NO and O2 binding

    BDNF promotes axon branching of retinal ganglion cells via miRNA-132 and p250GAP.

    Get PDF
    A crucial step in the development of the vertebrate visual system is the branching of retinal ganglion cell (RGC) axons within their target, the superior colliculus/tectum. A major player in this process is the neurotrophin brain-derived neurotrophic factor (BDNF). However, the molecular basis for the signaling pathways mediating BDNF action is less well understood. As BDNF exerts some of its functions by controlling the expression of microRNAs (miRNAs), we investigated whether miRNAs are also involved in BDNF-mediated retinal axon branching. Here, we demonstrate that the expression pattern of miRNA-132 in the retina is consistent with its involvement in this process, and that BDNF induces the upregulation of miRNA-132 in retinal cultures. Furthermore, in vitro gain-of-function and loss-of-function approaches in retinal cultures reveal that miRNA-132 mediates axon branching downstream of BDNF. A known target of miRNA-132 is the Rho family GTPase-activating protein, p250GAP. We find that p250GAP is expressed in RGC axons and mediates the effects of miRNA-132 in BDNF-induced branching. BDNF treatment or overexpression of miRNA-132 leads to a reduction in p250GAP protein levels in retinal cultures, whereas the overexpression of p250GAP abolishes BDNF-induced branching. Finally, we used a loss-of-function approach to show that miRNA-132 affects the maturation of RGC termination zones in the mouse superior colliculus in vivo, while their topographic targeting remains intact. Together, our data indicate that BDNF promotes RGC axon branching during retinocollicular/tectal map formation via upregulation of miRNA-132, which in turn downregulates p250GAP
    corecore