328 research outputs found
Nutrition Risk Classification: A Reproducible and Valid Tool for Nurses
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141661/1/ncp0020.pd
Formulation of a mmaA4 Gene Deletion Mutant of Mycobacterium bovis BCG in Cationic Liposomes Significantly Enhances Protection against Tuberculosis
A new vaccination strategy is urgently needed for improved control of the global tuberculosis (TB) epidemic. Using a mouse aerosol Mycobacterium tuberculosis challenge model, we investigated the protective efficacy of a mmaA4 gene deletion mutant of Mycobacterium bovis BCG (ΔmmaA4BCG) formulated in dimethyl dioctadecyl ammonium bromide (DDA) – D(+) trehalose 6,6 dibenenate (TDB) (DDA/TDB) adjuvant. In previous studies, deletion of the mmaA4 gene was shown to reduce the suppression of IL-12 production often seen after mycobacterial infections. While the non-adjuvanted ΔmmaA4BCG strain did not protect mice substantially better than conventional BCG against a tuberculous challenge in four protection experiments, the protective responses induced by the ΔmmaA4BCG vaccine formulated in DDA/TDB adjuvant was consistently increased relative to nonadjuvanted BCG controls. Furthermore, the ΔmmaA4BCG-DDA/TDB vaccine induced significantly higher frequencies of multifunctional (MFT) CD4 T cells expressing both IFNγ and TNFα (double positive) or IFNγ, TNFα and IL-2 (triple positive) than CD4 T cells derived from mice vaccinated with BCG. These MFT cells were characterized by having higher IFNγ and TNFα median fluorescence intensity (MFI) values than monofunctional CD4 T cells. Interestingly, both BCG/adjuvant and ΔmmaA4BCG/adjuvant formulations induced significantly higher frequencies of CD4 T cells expressing TNFα and IL-2 than nonadjuvanted BCG or ΔmmaA4BCG vaccines indicating that BCG/adjuvant mixtures may be more effective at inducing central memory T cells. Importantly, when either conventional BCG or the mutant were formulated in adjuvant and administered to SCID mice or immunocompromised mice depleted of IFNγ, significantly lower vaccine-derived mycobacterial CFU were detected relative to immunodeficient mice injected with non-adjuvanted BCG. Overall, these data suggest that immunization with the ΔmmaA4BCG/adjuvant formulation may be an effective, safe, and relatively inexpensive alternative to vaccination with conventional BCG
Early Secreted Antigen ESAT-6 of Mycobacterium tuberculosis Promotes Protective T Helper 17 Cell Responses in a Toll-Like Receptor-2-dependent Manner
Despite its relatively poor efficacy, Bacillus Calmette-Guérin (BCG) has been used as a tuberculosis (TB) vaccine since its development in 1921. BCG induces robust T helper 1 (Th1) immune responses but, for many individuals, this is not sufficient for host resistance against Mycobacterium tuberculosis (M. tb) infection. Here we provide evidence that early secreted antigenic target protein 6 (ESAT-6), expressed by the virulent M. tb strain H37Rv but not by BCG, promotes vaccine-enhancing Th17 cell responses. These activities of ESAT-6 were dependent on TLR-2/MyD88 signalling and involved IL-6 and TGF-β production by dendritic cells. Thus, animals that were previously infected with H37Rv or recombinant BCG containing the RD1 region (BCG::RD1) exhibited improved protection upon re-challenge with virulent H37Rv compared with mice previously infected with BCG or RD1-deficient H37Rv (H37RvΔRD1). However, TLR-2 knockout (TLR-2-/-) animals neither showed Th17 responses nor exhibited improved protection in response to immunization with H37Rv. Furthermore, H37Rv and BCG::RD1 infection had little effect on the expression of the anti-inflammatory microRNA-146a (miR146a) in dendritic cells (DCs), whereas BCG and H37RvΔRD1 profoundly induced its expression in DCs. Consistent with these findings, ESAT-6 had no effect on miR146a expression in uninfected DCs, but dramatically inhibited its upregulation in BCG-infected or LPS-treated DCs. Collectively, our findings indicate that, in addition to Th1 immunity induced by BCG, RD1/ESAT-6-induced Th17 immune responses are essential for optimal vaccine efficacy
Mutation of HIV-1 Genomes in a Clinical Population Treated with the Mutagenic Nucleoside KP1461
The deoxycytidine analog KP1212, and its prodrug KP1461, are prototypes of a new class of antiretroviral drugs designed to increase viral mutation rates, with the goal of eventually causing the collapse of the viral population. Here we present an extensive analysis of viral sequences from HIV-1 infected volunteers from the first “mechanism validation” phase II clinical trial of a mutagenic base analog in which individuals previously treated with antiviral drugs received 1600 mg of KP1461 twice per day for 124 days. Plasma viral loads were not reduced, and overall levels of viral mutation were not increased during this short-term study, however, the mutation spectrum of HIV was altered. A large number (N = 105 per sample) of sequences were analyzed, each derived from individual HIV-1 RNA templates, after 0, 56 and 124 days of therapy from 10 treated and 10 untreated control individuals (>7.1 million base pairs of unique viral templates were sequenced). We found that private mutations, those not found in more than one viral sequence and likely to have occurred in the most recent rounds of replication, increased in treated individuals relative to controls after 56 (p = 0.038) and 124 (p = 0.002) days of drug treatment. The spectrum of mutations observed in the treated group showed an excess of A to G and G to A mutations (p = 0.01), and to a lesser extent T to C and C to T mutations (p = 0.09), as predicted by the mechanism of action of the drug. These results validate the proposed mechanism of action in humans and should spur development of this novel antiretroviral approach.Koronis Pharmaceutical
Development of an In Vivo RNAi Protocol to Investigate Gene Function in the Filarial Nematode, Brugia malayi
Our ability to control diseases caused by parasitic nematodes is constrained by a limited portfolio of effective drugs and a paucity of robust tools to investigate parasitic nematode biology. RNA interference (RNAi) is a reverse-genetics tool with great potential to identify novel drug targets and interrogate parasite gene function, but present RNAi protocols for parasitic nematodes, which remove the parasite from the host and execute RNAi in vitro, are unreliable and inconsistent. We have established an alternative in vivo RNAi protocol targeting the filarial nematode Brugia malayi as it develops in an intermediate host, the mosquito Aedes aegypti. Injection of worm-derived short interfering RNA (siRNA) and double stranded RNA (dsRNA) into parasitized mosquitoes elicits suppression of B. malayi target gene transcript abundance in a concentration-dependent fashion. The suppression of this gene, a cathepsin L-like cysteine protease (Bm-cpl-1) is specific and profound, both injection of siRNA and dsRNA reduce transcript abundance by 83%. In vivo Bm-cpl-1 suppression results in multiple aberrant phenotypes; worm motility is inhibited by up to 69% and parasites exhibit slow-moving, kinked and partial-paralysis postures. Bm-cpl-1 suppression also retards worm growth by 48%. Bm-cpl-1 suppression ultimately prevents parasite development within the mosquito and effectively abolishes transmission potential because parasites do not migrate to the head and proboscis. Finally, Bm-cpl-1 suppression decreases parasite burden and increases mosquito survival. This is the first demonstration of in vivo RNAi in animal parasitic nematodes and results indicate this protocol is more effective than existing in vitro RNAi methods. The potential of this new protocol to investigate parasitic nematode biology and to identify and validate novel anthelmintic drug targets is discussed
EspA Acts as a Critical Mediator of ESX1-Dependent Virulence in Mycobacterium tuberculosis by Affecting Bacterial Cell Wall Integrity
Mycobacterium tuberculosis (Mtb) requires the ESX1 specialized protein secretion system for virulence, for triggering cytosolic immune surveillance pathways, and for priming an optimal CD8+ T cell response. This suggests that ESX1 might act primarily by destabilizing the phagosomal membrane that surrounds the bacterium. However, identifying the primary function of the ESX1 system has been difficult because deletion of any substrate inhibits the secretion of all known substrates, thereby abolishing all ESX1 activity. Here we demonstrate that the ESX1 substrate EspA forms a disulfide bonded homodimer after secretion. By disrupting EspA disulfide bond formation, we have dissociated virulence from other known ESX1-mediated activities. Inhibition of EspA disulfide bond formation does not inhibit ESX1 secretion, ESX1-dependent stimulation of the cytosolic pattern receptors in the infected macrophage or the ability of Mtb to prime an adaptive immune response to ESX1 substrates. However, blocking EspA disulfide bond formation severely attenuates the ability of Mtb to survive and cause disease in mice. Strikingly, we show that inhibition of EspA disulfide bond formation also significantly compromises the stability of the mycobacterial cell wall, as does deletion of the ESX1 locus or individual components of the ESX1 system. Thus, we demonstrate that EspA is a major determinant of ESX1-mediated virulence independent of its function in ESX1 secretion. We propose that ESX1 and EspA play central roles in the virulence of Mtb in vivo because they alter the integrity of the mycobacterial cell wall
Fas-Mediated Apoptosis Regulates the Composition of Peripheral αβ T Cell Repertoire by Constitutively Purging Out Double Negative T Cells
BACKGROUND: The Fas pathway is a major regulator of T cell homeostasis, however, the T cell population that is controlled by the Fas pathway in vivo is poorly defined. Although CD4 and CD8 single positive (SP) T cells are the two major T cell subsets in the periphery of wild type mice, the repertoire of mice bearing loss-of-function mutation in either Fas (lpr mice) or Fas ligand (gld mice) is predominated by CD4(-)CD8(-) double negative alphabeta T cells that also express B220 and generally referred to as B220+DN T cells. Despite extensive analysis, the basis of B220+DN T cell lymphoproliferation remains poorly understood. In this study we re-examined the issue of why T cell lymphoproliferation caused by gld mutation is predominated by B220+DN T cells. METHODOLOGY AND PRINCIPAL FINDINGS: We combined the following approaches to study this question: Gene transcript profiling, BrdU labeling, and apoptosis assays. Our results show that B220+DN T cells are proliferating and dying at exceptionally high rates than SP T cells in the steady state. The high proliferation rate is restricted to B220+DN T cells found in the gut epithelium whereas the high apoptosis rate occurred both in the gut epithelium and periphery. However, only in the periphery, apoptosis of B220+DN T cell is Fas-dependent. When the Fas pathway is genetically impaired, apoptosis of peripheral B220+DN T cells was reduced to a baseline level similar to that of SP T cells. Under these conditions of normalized apoptosis, B220+DN T cells progressively accumulate in the periphery, eventually resulting in B220+DN T cell lymphoproliferation. CONCLUSIONS/SIGNIFICANCE: The Fas pathway plays a critical role in regulating the tissue distribution of DN T cells through targeting and elimination of DN T cells from the periphery in the steady state. The results provide new insight into pathogenesis of DN T cell lymphoproliferation
RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis
Mucorales are an emerging group of human pathogens that are responsible for the lethal disease mucormycosis. Unfortunately, functional studies on the genetic factors behind the virulence of these organisms are hampered by their limited genetic tractability, since they are reluctant to classical genetic tools like transposable elements or gene mapping. Here, we describe an RNAi-based functional genomic platform that allows the identification of new virulence factors through a forward genetic approach firstly described in Mucorales. This platform contains a whole-genome collection of Mucor circinelloides silenced transformants that presented a broad assortment of phenotypes related to the main physiological processes in fungi, including virulence, hyphae morphology, mycelial and yeast growth, carotenogenesis and asexual sporulation. Selection of transformants with reduced virulence allowed the identification of mcplD, which encodes a Phospholipase D, and mcmyo5, encoding a probably essential cargo transporter of the Myosin V family, as required for a fully virulent phenotype of M. circinelloides. Knock-out mutants for those genes showed reduced virulence in both Galleria mellonella and Mus musculus models, probably due to a delayed germination and polarized growth within macrophages. This study provides a robust approach to study virulence in Mucorales and as a proof of concept identified new virulence determinants in M. circinelloides that could represent promising targets for future antifungal therapies
A Negative Regulatory Loop between MicroRNA and Hox Gene Controls Posterior Identities in Caenorhabditis elegans
MicroRNAs (miRNAs) have been found to regulate gene expression across eukaryotic species, but the function of most miRNA genes remains unknown. Here we describe how the analysis of the expression patterns of a well-conserved miRNA gene, mir-57, at cellular resolution for every minute during early development of Caenorhabditis elegans provided key insights in understanding its function. Remarkably, mir-57 expression shows strong positional bias but little tissue specificity, a pattern reminiscent of Hox gene function. Despite the minor defects produced by a loss of function mutation, overexpression of mir-57 causes dramatic posterior defects, which also mimic the phenotypes of mutant alleles of a posterior Hox gene, nob-1, an Abd homolog. More importantly, nob-1 expression is found in the same two posterior AB sublineages as those expressing mir-57 but with an earlier onset. Intriguingly, nob-1 functions as an activator for mir-57 expression; it is also a direct target of mir-57. In agreement with this, loss of mir-57 function partially rescues the nob-1 allele defects, indicating a negative feedback regulatory loop between the miRNA and Hox gene to provide positional cues. Given the conservation of the miRNA and Hox gene, the regulatory mechanism might be broadly used across species. The strategy used here to explore mir-57 function provides a path to dissect the regulatory relationship between genes
- …