3,122 research outputs found

    Measurement of 222Rn dissolved in water at the Sudbury Neutrino Observatory

    Full text link
    The technique used at the Sudbury Neutrino Observatory (SNO) to measure the concentration of 222Rn in water is described. Water from the SNO detector is passed through a vacuum degasser (in the light water system) or a membrane contact degasser (in the heavy water system) where dissolved gases, including radon, are liberated. The degasser is connected to a vacuum system which collects the radon on a cold trap and removes most other gases, such as water vapor and nitrogen. After roughly 0.5 tonnes of H2O or 6 tonnes of D2O have been sampled, the accumulated radon is transferred to a Lucas cell. The cell is mounted on a photomultiplier tube which detects the alpha particles from the decay of 222Rn and its daughters. The overall degassing and concentration efficiency is about 38% and the single-alpha counting efficiency is approximately 75%. The sensitivity of the radon assay system for D2O is equivalent to ~3 E(-15) g U/g water. The radon concentration in both the H2O and D2O is sufficiently low that the rate of background events from U-chain elements is a small fraction of the interaction rate of solar neutrinos by the neutral current reaction.Comment: 14 pages, 6 figures; v2 has very minor change

    Demographic, risk behaviour and personal network variables associated with prevalent hepatitis C, hepatitis B, and HIV infection in injection drug users in Winnipeg, Canada

    Get PDF
    BACKGROUND: Previous studies have used social network variables to improve our understanding of HIV transmission. Similar analytic approaches have not been undertaken for hepatitis C (HCV) or B (HBV), nor used to conduct comparative studies on these pathogens within a single setting. METHODS: A cross-sectional survey consisting of a questionnaire and blood sample was conducted on injection drug users in Winnipeg between December 2003 and September 2004. Logistic regression analyses were used to correlate respondent and personal network data with HCV, HBV and HIV prevalence. RESULTS: At the multivariate level, pathogen prevalence was correlated with both respondent and IDU risk network variables. Pathogen transmission was associated with several distinct types of high-risk networks formed around specific venues (shooting galleries, hotels) or within users who are linked by their drug use preferences. Smaller, isolated pockets of IDUs also appear to exist within the larger population where behavioural patterns pose a lesser risk, unless or until, a given pathogen enters those networks. CONCLUSION: The findings suggest that consideration of both respondent and personal network variables can assist in understanding the transmission patterns of HCV, HBV, and HIV. It is important to assess these effects for multiple pathogens within one setting as the associations identified and the direction of those associations can differ between pathogens

    Elucidation of Hepatitis C Virus Transmission and Early Diversification by Single Genome Sequencing

    Get PDF
    A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures

    Breakup Temperature of Target Spectators in Au + Au Collisions at E/A = 1000 MeV

    Get PDF
    Breakup temperatures were deduced from double ratios of isotope yields for target spectators produced in the reaction Au + Au at 1000 MeV per nucleon. Pairs of 3,4^{3,4}He and 6,7^{6,7}Li isotopes and pairs of 3,4^{3,4}He and H isotopes (p, d and d, t) yield consistent temperatures after feeding corrections, based on the quantum statistical model, are applied. The temperatures rise with decreasing impact parameter from 4 MeV for peripheral to about 10 MeV for the most central collisions. The good agreement with the breakup temperatures measured previously for projectile spectators at an incident energy of 600 MeV per nucleon confirms the observed universality of the spectator decay at relativistic bombarding energies. The measured temperatures also agree with the breakup temperatures predicted by the statistical multifragmentation model. For these calculations a relation between the initial excitation energy and mass was derived which gives good simultaneous agreement for the fragment charge correlations. The energy spectra of light charged particles, measured at θlab\theta_{lab} = 150^{\circ}, exhibit Maxwellian shapes with inverse slope parameters much higher than the breakup temperatures. The statistical multifragmentation model, because Coulomb repulsion and sequential decay processes are included, yields light-particle spectra with inverse slope parameters higher than the breakup temperatures but considerably below the measured values. The systematic behavior of the differences suggests that they are caused by light-charged-particle emission prior to the final breakup stage. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-qComment: 29 pages, TeX with 11 included figures; Revised version accepted for publication in Z. Phys. A Two additional figure

    Radiative contribution to neutrino masses and mixing in μν\mu\nuSSM

    Full text link
    In an extension of the minimal supersymmetric standard model (popularly known as the μν\mu\nuSSM), three right handed neutrino superfields are introduced to solve the μ\mu-problem and to accommodate the non-vanishing neutrino masses and mixing. Neutrino masses at the tree level are generated through RR-parity violation and seesaw mechanism. We have analyzed the full effect of one-loop contributions to the neutrino mass matrix. We show that the current three flavour global neutrino data can be accommodated in the μν\mu\nuSSM, for both the tree level and one-loop corrected analyses. We find that it is relatively easier to accommodate the normal hierarchical mass pattern compared to the inverted hierarchical or quasi-degenerate case, when one-loop corrections are included.Comment: 51 pages, 14 figures (58 .eps files), expanded introduction, other minor changes, references adde

    Minimally-destructive atmospheric ionisation mass spectrometry authenticates authorship of historical manuscripts

    Get PDF
    Authentic historic manuscripts fetch high sums, but establishing their authenticity is challenging, relies on a host of stylistic clues and requires expert knowledge. High resolution mass spectrometry has not, until now, been applied to guide the authentication of historic manuscripts. Robert Burns is a well-known Scottish poet, whose fame, and the eponymous ‘Burns Night’ are celebrated world-wide. Authenticity of his works is complicated by the ‘industrial’ production of fakes by Alexander Smith in the 1890s, many of which were of good quality and capable of fooling experts. This study represents the first analysis of the inks and paper used in Burns poetry, in a minimally destructive manner that could find application in many areas. Applying direct infusion mass spectrometry to a panel of selected authenticated Burns and Smith manuscripts, we have produced a Support Vector Machine classifier that distinguishes Burns from Smith with a 0.77 AUC. Using contemporary recipes for inks, we were also able to match features of each to the inks used to produce some of Burns’ original manuscripts. We anticipate the method and classifier having broad application in authentication of manuscripts, and our analysis of contemporary inks to provide insights into the production of written works of art

    Role of the Endogenous Antioxidant System in the Protection of Schistosoma mansoni Primary Sporocysts against Exogenous Oxidative Stress

    Get PDF
    Antioxidants produced by the parasite Schistosoma mansoni are believed to be involved in the maintenance of cellular redox balance, thus contributing to larval survival in their intermediate snail host, Biomphalaria glabrata. Here, we focused on specific antioxidant enzymes, including glutathione-S-transferases 26 and 28 (GST26 and 28), glutathione peroxidase (GPx), peroxiredoxin 1 and 2 (Prx1 and 2) and Cu/Zn superoxide dismutase (SOD), known to be involved in cellular redox reactions, in an attempt to evaluate their endogenous antioxidant function in the early-developing primary sporocyst stage of S. mansoni. Previously we demonstrated a specific and consistent RNA interference (RNAi)-mediated knockdown of GST26 and 28, Prx1 and 2, and GPx transcripts, and an unexpected elevation of SOD transcripts in sporocysts treated with gene-specific double-stranded (ds)RNA. In the present followup study, in vitro transforming sporocysts were exposed to dsRNAs for GST26 and 28, combined Prx1/2, GPx, SOD or green-fluorescent protein (GFP, control) for 7 days in culture, followed by assessment of the effects of specific dsRNA treatments on protein levels using semi-quantitative Western blot analysis (GST26, Prx1/2 only), and larval susceptibility to exogenous oxidative stress in in vitro killing assays. Significant decreases (80% and 50%) in immunoreactive GST26 and Prx1/2, respectively, were observed in sporocysts treated with specific dsRNA, compared to control larvae treated with GFP dsRNA. Sporocysts cultured with dsRNAs for GST26, GST28, Prx1/2 and GPx, but not SOD dsRNA, were significantly increased in their susceptibility to H2O2 oxidative stress (60–80% mortalities at 48 hr) compared to GFP dsRNA controls (∼18% mortality). H2O2-mediated killing was abrogated by bovine catalase, further supporting a protective role for endogenous sporocyst antioxidants. Finally, in vitro killing of S. mansoni sporocysts by hemocytes of susceptible NMRI B. glabrata snails was increased in larvae treated with Prx1/2, GST26 and GST28 dsRNA, compared to those treated with GFP or SOD dsRNAs. Results of these experiments strongly support the hypothesis that endogenous expression and regulation of larval antioxidant enzymes serve a direct role in protection against external oxidative stress, including immune-mediated cytotoxic reactions. Moreover, these findings illustrate the efficacy of a RNAi-type approach in investigating gene function in larval schistosomes

    More Scalable LTL Model Checking via Discovering Design-Space Dependencies (D3)

    Get PDF
    Modern system design often requires comparing several models over a large design space. Different models arise out of a need to weigh different design choices, to check core capabilities of versions with varying features, or to analyze a future version against previous ones. Model checking can compare different models; however, applying model checking off-the-shelf may not scale due to the large size of the design space for today’s complex systems. We exploit relationships between different models of the same (or related) systems to optimize the model-checking search. Our algorithm, D3 , preprocesses the design space and checks fewer model-checking instances, e.g., using nuXmv. It automatically prunes the search space by reducing both the number of models to check, and the number of LTL properties that need to be checked for each model in order to provide the complete model-checking verdict for every individual model-property pair. We formalize heuristics that improve the performance of D3 . We demonstrate the scalability of D3 by extensive experimental evaluation, e.g., by checking 1,620 real-life models for NASA’s NextGen air traffic control system. Compared to checking each model-property pair individually, D3 is up to 9.4 × faster

    The impact of Stieltjes' work on continued fractions and orthogonal polynomials

    Full text link
    Stieltjes' work on continued fractions and the orthogonal polynomials related to continued fraction expansions is summarized and an attempt is made to describe the influence of Stieltjes' ideas and work in research done after his death, with an emphasis on the theory of orthogonal polynomials

    Functional ectodomain of the hemagglutinin-neuraminidase protein is expressed in transgenic tobacco cells as a candidate vaccine against Newcastle disease virus.

    Get PDF
    Recently, the use of plants for the production of recombinant proteins has been well demonstrated with promising outcomes. In this study, an efficient Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cells system expressing the ectodomain of hemagglutinin-neuraminidase (eHN) protein from Newcastle disease virus (NDV) strain AF2240 was established. Transgenic tobacco BY-2 cell cultures expressing the immunogenic eHN protein were generated and the translation efficiency of eHN protein was enhanced using the 5′-untranslated region of Nicotiana tabacum alcohol dehydrogenase gene (NtADH 5′-UTR) under the control of strong cauliflower mosaic virus (CaMV 35S) promoter. Transgenic lines verified by real-time PCR showed high level of eHN mRNA transcripts and immunoblotting confirmed the presence of 66 kD eHN protein. The eHN protein was stably produced in an average of 0.2–0.4 % total soluble protein. Green fluorescent protein-tagged eHN protein was expressed and localized at the cytosol of BY-2 cell. All mice receiving purified eHN protein from transgenic tobacco BY-2 cells produced specific anti-NDV antibodies. We concluded that plant made eHN elicit immune response and can serve as candidate vaccine against NDV
    corecore