1,444 research outputs found

    Measurement of 139La(p,x) cross sections from 35–60 MeV by stacked-target activation

    Get PDF
    A stacked-target of natural lanthanum foils (99.9119% 139La) was irradiated using a 60 MeV proton beam at the LBNL 88-Inch Cyclotron. 139La(p,x) cross sections are reported between 35–60 MeV for nine product radionuclides. The primary motivation for this measurement was the need to quantify the production of 134Ce. As a positron-emitting analogue of the promising medical radionuclide 225Ac, 134Ce is desirable for in vivo applications of bio-distribution assays for this emerging radio-pharmaceutical. The results of this measurement were compared to the nuclear model codes TALYS, EMPIRE and ALICE (using default parameters), which showed significant deviation from the measured values

    Practices in the Danger Culture of Late Industrial Society

    Get PDF

    Optogenetics and deep brain stimulation neurotechnologies

    Full text link
    Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders

    Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor

    Full text link
    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. Based on the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. However, verification of the iron-deficiency and measurements of additional elements, such as the alpha-element Mg, are mandatory for demonstrating that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming the iron abundance of less than 1/4000th that of the Sun, and showing that the overall abundance pattern mirrors that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.Comment: 16 pages, including 2 figures. Accepted for publication in Nature. It is embargoed for discussion in the press until formal publication in Natur

    Easy detection of chromatin binding proteins by the histone association assay

    Get PDF
    The Histone Association Assay provides an easy approach for detecting proteins that bind chromatin in vivo. This technique is based on a chromatin immunoprecipitation protocol using histone H3-specific antibodies to precipitate bulk chromatin from crosslinked whole cell extracts. Proteins that co-precipitate with chromatin are subsequently detected by conventional SDS-PAGE and Western blot analysis. Unlike techniques that separate chromatin and non-chromatin interacting proteins by centrifugation, this method can be used to delineate whether a protein is chromatin associated regardless of its innate solubility. Moreover, the relative amount of protein bound to DNA can be ascertained under quantitative conditions. Therefore, this technique may be utilized for analyzing the chromatin association of proteins involved in diverse cellular processes

    Ewing sarcoma of the mandible mimicking an odontogenic abscess – a case report

    Get PDF
    Ewing sarcoma (ES) of the mandible is rare and can be mistaken for inflammation of dental origin. We present a 24-year old male patient which underwent radical tumour surgery and primary reconstruction with a microvascular osteoseptocutaneous free fibular flap as well as postoperative adjuvant chemotherapy. Incomplete osseous tumour resection required a second intervention. This case report recapitulates the clinical and histopathological findings in oral ES, demonstrates its sometimes difficult diagnosis and discusses the (dis-)advantages of primary osseous reconstruction in ablative tumour surgery

    Modeling recursive RNA interference.

    Get PDF
    An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments

    Extragalactic Globular Clusters and Galaxy Formation

    Full text link
    Globular cluster (GC) systems have now been studied in galaxies ranging from dwarfs to giants and spanning the full Hubble sequence of morphological types. Imaging and spectroscopy with the Hubble Space Telescope and large ground-based telescopes have together established that most galaxies have bimodal color distributions that reflect two subpopulations of old GCs: metal-poor and metal-rich. The characteristics of both subpopulations are correlated with those of their parent galaxies. We argue that metal-poor GCs formed in low-mass dark matter halos in the early universe and that their properties reflect biased galaxy assembly. The metal-rich GCs were born in the subsequent dissipational buildup of their parent galaxies and their ages and abundances indicate that most massive early-type galaxies formed the bulk of their stars at early times. Detailed studies of both subpopulations offer some of the strongest constraints on hierarchical galaxy formation that can be obtained in the near-field.Comment: 74 pages, including 14 figures. In press for Annual Reviews of Astronomy and Astrophysic

    Information Technology to Support Improved Care For Chronic Illness

    Get PDF
    BackgroundIn populations with chronic illness, outcomes improve with the use of care models that integrate clinical information, evidence-based treatments, and proactive management of care. Health information technology is believed to be critical for efficient implementation of these chronic care models. Health care organizations have implemented information technologies, such as electronic medical records, to varying degrees. However, considerable uncertainty remains regarding the relative impact of specific informatics technologies on chronic illness care.ObjectiveTo summarize knowledge and increase expert consensus regarding informatics components that support improvement in chronic illness care.DesignA systematic review of the literature was performed. "Use case" models were then developed, based on the literature review, and guidance from clinicians and national quality improvement projects. A national expert panel process was conducted to increase consensus regarding information system components that can be used to improve chronic illness care.ResultsThe expert panel agreed that informatics should be patient-centered, focused on improving outcomes, and provide support for illness self-management. They concurred that outcomes should be routinely assessed, provided to clinicians during the clinical encounter, and used for population-based care management. It was recommended that interactive, sequential, disorder-specific treatment pathways be implemented to quickly provide clinicians with patient clinical status, treatment history, and decision support.ConclusionsSpecific informatics strategies have the potential to improve care for chronic illness. Software to implement these strategies should be developed, and rigorously evaluated within the context of organizational efforts to improve care
    corecore