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Abstract

We study the optimal control of storage which is used for both arbitrage and buffer-

ing against unexpected events (shocks), with particular applications to the control of

energy systems in a stochastic and typically time-heterogeneous environment. Our

philosophy is that of viewing the problem as being formally one of stochastic dynamic

programming (SDP), but of recasting the SDP recursion in terms of functions which,

if known, would reduce the associated optimisation problem to one which is determin-

istic, except that it must be re-solved at times when shocks occur. In the case of a

perfectly efficient store facing linear buying and selling costs the functions required for

this approach may be determined exactly; otherwise they may typically be estimated

to good approximation. We provide characterisations of optimal control policies.

We consider also the associated deterministic optimisation problem, outlining an

approach to its solution which is both computationally tractable and—through the

identification of a running forecast horizon—suitable for the management of systems

over indefinitely extended periods of time.

We give examples based on Great Britain electricity price data.

1 Introduction

How should one optimally control storage which is used simultaneously for a number of dif-

ferent purposes? We study this problem in the case of a single store which is used for both

price arbitrage, i.e. for buying and selling over time, and for buffering against unexpected

events, or shocks. Here an optimal control must balance the sometimes conflicting con-

trols which would apply to these two uses of storage considered individually. Of particular

interest is the control of an energy store in a stochastic and typically time-heterogeneous

environment, where at any time a full stochastic description of that environment may not

be available over more than a relatively short future time horizon. The shocks correspond,

for example, to the loss of a generator or transmission line, or a sudden surge in demand.

Our philosophy is that of viewing the problem as being formally one of stochastic dynamic

programming (SDP), but of recasting the SDP recursion in terms of functions which may

be determined in advance, either exactly or approximately, and which reduce the associ-

ated optimisation problem to one which is deterministic, except that it must be re-solved

at those times at which shocks occur.

There is considerable literature on the control of storage for each of the above two purposes

considered on its own. There have been numerous studies of the use of storage for buffering
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against both the increased variability and the increased uncertainty in electrical power

systems due to the higher penetration of renewable generation—the former due to the

natural variability of such resources as wind power, and the latter due to the inherent

uncertainty of forecasting. These studies have considered many different more detailed

objectives; these range from the sizing and control of storage facilities co-located with the

renewable generation so as to provide a smoother supply and so offset the need for network

reinforcement [1, 2, 3], to studies on storage embedded within transmission networks so

as to increase wind power utilisation and so reduce overall generation costs [4, 5, 6].

In addition there have been a number of studies into the more general use of storage for

buffering, for example, so as to provide fast frequency response to power networks [7, 8, 9],

or to provide quality of service as part of a microgrid [10, 11].

In the case of the use of storage for arbitrage, and with linear cost functions for buying and

selling at each instant in time, the problem of optimal control is the classical warehouse

problem (see [12, 13, 14] and also [15] for a more recent example). Cruise et al [16] consider

the optimal control of storage in the case where the store is a price-maker (i.e. the size of

the store is sufficiently large that its activities influence prices in the market in which it

operates) and is subject to both capacity and rate constraints; they develop the associated

Lagrangian theory, and further show that the optimal control at any point in time usually

depends only on the cost functions associated with a short future time horizon. Recent

alternative approaches for studying the value and use of storage for arbitrage can be found

in the papers [17, 18, 19, 20, 21]—see also the text [22], and the further references given

in [16]. For an assessment of the potential value of energy storage in the UK electricity

system see [9].

In general the problem of using a store for buffering is necessarily stochastic. The natural

mathematical approach is via stochastic dynamic programming. This, however, is liable to

be computationally intractable, especially in the case of long time horizons and the likely

time heterogeneity of the stochastic processes involved. Therefore much of the literature

considers necessarily somewhat heuristic but nevertheless plausible control policies—again

often adapted to meeting a wide variety of objectives. For example, for large stores

operating within transmission networks, the buffering policies studied have included that

of a fixed target level policy [23], a dynamic target level policy [24], and a two-stage process

with day ahead generation scheduling and an online procedure to adapt load levels [25].

Control policies have been studied via a range of analytic and simulation-based methods.

Examples of an analytic approach can be found in [26], where partial differential equa-

tions are utilised to model the behaviour and control of a store, and in [27, 28], where

spectral analysis of wind and load data is used with models which also incorporate tur-

bine behaviour. Simulation-based studies include [23, 24], which use a bootstrap approach

based on real wind forecast error data, and [25], which uses Monte Carlo simulation of the

network state.

In the present paper we use an economic framework to study the optimal control of a

store which, as previously stated, is used both for price arbitrage and for buffering against

occasional and unpredictable shocks whose occurrence is described by some stochastic

process. The store seeks to operate in such a way as to minimise over time the expected

total cost of its operation. We believe such an economic framework to be natural when

the store operates as part of some larger and perhaps very complex system, provided the

price signals under which the store operates are correctly chosen—see, for example, [29].

The store may be sufficiently large as to have market impact, leading to nonlinear cost
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functions for buying and selling, may be subject to rate (as well as capacity) constraints,

and, as will typically be the case, may suffer from round-trip inefficiencies. We formulate

a stochastic model which is realistic in many circumstances and characterise some of the

properties of an optimal control, relating the results to the existing experimental literature.

Our approach is that of re-expressing the traditional SDP recursion so as to reduce the

associated optimisation problem to one which is deterministic, except only that it must

be dynamically re-solved whenever shocks occur. The specification of the associated op-

timisation problem requires that the cost functions Ct, which give the costs of buying or

selling at each successive time t, are supplemented by further functions At associated with

the expected costs of possible shocks. The cost functions Ct are formally assumed to be

deterministic. However, when prices are stochastic, deterministic approximations may be

used and updated at successive time steps; this deterministic re-optimisation approach is

common when storage is used for price arbitrage alone—see, for example, [30, 15, 31, 32]

and, for the case where storage is sufficiently large as to have market impact, see [16]. The

functions At (which, although defined in terms of the stochastic process of shocks, are also

deterministic) are formally introduced in Section 2. We show that in the case of a perfectly

efficient store facing linear buying and selling costs the functions At may be determined

exactly, and that otherwise they may typically be estimated to a good approximation.

The optimal control up to the time of the first shock is given by the solution, at the

start of the control period, of an optimisation problem which can be regarded as that

of minimising the costs associated with the store buying and selling added to those of

notionally “insuring” for each future instant in time against the effects of the random

fluctuations, i.e. the shocks, resulting from the provision of buffering services. The cost

of such “insurance” depends on the absolute level of the store at the relevant time. Thus

the deterministic problem is that of choosing the vector of successive levels of the store

so as to minimise a total cost function
∑

t[Ct(xt) + At(st)], subject to rate and capacity

constraints. Here Ct(xt) is the cost of incrementing the level of the store (positively

or negatively) at time t by xt, and the function At is such that At(st) is the expected

additional cost of dealing with any shock which may occur at the time t when the level

of the store is then st. We define this optimisation problem more carefully in Sections 2

and discuss various possible approaches to its solution. In the stochastic environment in

which the store operates, the solution of this problem determines the future control of the

store until such time as its buffering services are actually required, following which the

level of the store is perturbed and the optimisation problem must be re-solved starting at

the new level. The continuation of this process provides what is in principle the exactly

optimal stochastic control of the store on a potentially indefinite time scale.

In Section 2 we formulate the relevant stochastic model, discuss its applicability, and give

various approaches to the determination of the optimal control. These approaches require

the availability of good estimates of the above functions At, and in Section 4 we show how

these may be obtained. In Section 3 we provide some characteristic properties of optimal

solutions, which we relate to empirical work in the existing literature. In Section 5 gives

examples.

2 Model and determination of optimal control

Consider the management of a store over a finite time interval which is divided into a

succession of periods indexed by 1, . . . , T . At the start of each time period t the store
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makes a decision as to how much to buy or sell during that time period; however, the level

of the store at the end of that time period may be different from that planned if, during

the course of the period, the store is called upon to provide buffering services to deal

with some unexpected event or random shock. Such a shock might be the need to supply

additional energy during the time period t due to an unexpected failure—for example that

of a generator—or might simply be the difference between forecast and actual renewable

generation or demand.

We suppose the store has a capacity of E units of energy. Similarly we suppose that

the total energy which may be input or output during any time period is subject to rate

(i.e. power) constraints PI and PO respectively. This slotted-time model corresponds, for

example, to real world energy markets where energy is typically traded at half-hourly

or hourly intervals, with the actual delivery of that energy occurring in the intervening

continuous time period. Detailed descriptions of the operation of the UK market can be

found in [33, 34]. The theory developed here easily extends to the case where the above

storage parameters are time dependent.

Define also the set X = [−PO, PI ]. Both buying and selling prices associated with any

time period t may be represented by a convex function Ct defined on X such that Ct(x)

is the cost of a planned change of x to the level of the store during the time period t.

Typically each function Ct is increasing and Ct(0) = 0; then, for positive x, Ct(x) is the

cost of buying x units and, for negative x, Ct(x) is the negative of the reward for selling −x
units. Then the convexity assumption corresponds, for each time t, to an increasing cost of

buying each additional unit, a decreasing reward obtained for selling each additional unit,

and every unit buying price being at least as great as every unit selling price. When, as is

usually the case, the store is not perfectly efficient in the sense that only a fraction η ≤ 1

of the energy input is available for output, then this may be captured in the cost function

by reducing selling prices by the factor η; under the assumption that the cost functions Ct
are increasing it is easily verified that this adjustment preserves the above convexity of

the functions Ct. We thus assume that the cost functions are so adjusted so as to capture

any such round-trip inefficiency. The functions Ct are taken to be deterministic but, as

discussed in the Introduction, in a stochastic environment a deterministic re-optimisation

approach is possible.

A further form of possible inefficiency of a store is leakage, whereby a fraction of the

contents of the store is lost in each unit of time. We do not explicitly model this here.

However, only routine modifications are required to do so, and are entirely analogous to

those described in [16].

Suppose that at the end of each time period t − 1 the level of the store is given by the

random variable St−1, where we take S0 to be given by the initial level s0 of the store. We

assume that one may then choose a planned adjustment (contract to buy or sell) xt ∈ X
and such that St−1 + xt ∈ [0, E] to the level of the store during the time period t. The

planned adjustment xt is a (deterministic) function of the level St−1 and the cost of this

adjustment is Ct(xt). Subsequent to this, during the course of the time period t, the store

may be subject to a shock or random disturbance, corresponding to the need to provide

unexpected buffering services. This shock has an associated cost, typically due to the

store not being able to provide the required services, and may further disturb the final

level of the store at the end of the time period t. We assume that the cost of any shock

occurring during the time period t and the resulting actual level of the store at the end of

the time period t are given by random variables whose joint distribution is a function of the
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planned final level St−1+xt of the store for the end of that time period, but that, given this

planned final level, these random variables are otherwise independent of all else. Thus we

may assume that there are given T independent stochastic processes (Dt(s), St(s))s∈[0,E]

each taking values in R×R (where each such “process” is indexed by the possible levels s

of the store rather than by time), and that the shock cost and actual store level at the end

of each time period t are then given respectively by Dt(St−1 +xt) and St(St−1 +xt); in the

absence of any shock during the time period t, we have Dt(s) = 0 and St(s) = s for all s.

The assumption that the joint distribution of the shock cost and store level disturbance

associated with any time period t depend only on the planned level St−1 + xt of the store

at the end of the time period t is likely to be most accurate in applications where the

store is able to adjust to its target level quickly within each time period, or where the

level of the store does not change too much within a single time period; its relaxation—for

example, by allowing a dependence of these random variables on a more general function

of St−1 and xt—simply complicates without essentially changing the analysis below. Note

that the model further assumes that disturbances do not persist beyond the end of the

time periods in which they occur. Under any given control policy for the management of

the store satisfying the above conditions (i.e. under any specification, for each time t, of

the planned increment xt as a function of the realised value of St−1), the levels St of the

store at the end of the successive time periods t form a Markov process.

For each t, and conditional on each possible value st−1 of the level St−1 of the store at the

end of the time period t−1, define Vt−1(st−1) to be the expected future cost of subsequently

managing the store under an optimal control—where, here and elsewhere, by an optimal

control we mean a control defined as above under which the expected cost of managing

the store is minimised. We then have the SDP recursion

Vt−1(st−1) = min
xt∈X

st−1+xt∈[0,E]

[
Ct(xt) + E[Dt(st−1 + xt) + Vt(St(st−1 + xt))]

]
, (1)

where E denotes expectation and where, as above, st−1 + xt and St(st−1 + xt) (= St) are

respectively the planned and actual levels of the store at the end of the time period t. (The

assumed independence of the “processes” of paired random variables {(Dt(s), st(s))}s∈[0,E]

defining shock costs and disturbances in successive time periods ensures that it is sufficient

to consider unconditional expectations in (1).) We further have the terminal condition

VT (sT ) = 0 (2)

for all possible levels sT of the store at the end of the time period T . The recursion (1) and

the terminal condition (2) may in principle be used to determine an optimal control. In

particular, given the level st−1 of the store at the end of any time period t−1, the optimal

planned increment to the level of the store for the time period t is given by x̂t(st−1) where

this is defined to be the value of xt which achieves the minimisation in the recursion (1).

However, as discussed in the Introduction, an SDP approach may frequently be computa-

tionally intractable and is further not suitable for the management of a store over indefinite

time horizons. Thus, for each t, let the (deterministic) function At on [0, E] be such that,

for any planned level st = st−1 + xt of the store for the end of the time period t,

At(st) = E[Dt(st) + Vt(St(st))]− Vt(st), (3)

where again the random variable St(st) is the actual level of the store at the end of the

time period t. Given the planned level st of the store for the end of the time period t,
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the quantity At(st) is the difference between the expected cost E(Dt(st) + Vt(St(st)))

of optimally managing the store during and subsequent to the time period t and the

corresponding expected cost Vt(st) which would be incurred in the guaranteed absence of

any shock during that time period. We shall show in Section 4 that in many cases the

functions At may be efficiently determined either exactly or to a very good approximation

even in the absence of any knowledge of the functions Vt.

It now follows from (3) that the recursion (1) may be rewritten as

Vt−1(st−1) = min
xt∈X

st−1+xt∈[0,E]

[
Ct(xt) +At(st−1 + xt) + Vt(st−1 + xt),

]
, (4)

where we again require the terminal condition (2). Further, given the level st−1 of the store

at the end of any time period t− 1, the optimal planned increment x̂t(st−1) to the level of

the store for the time period t is given by the value of xt which achieves the minimisation

in the recursion (4).

The (backwards) recursion (4) is entirely deterministic. Given a knowledge of the func-

tions At (see Section 4), a complete solution of the recursion (4) would determine, for

all t = 1, . . . , T and for all possible levels st−1 of the store at the end of the time pe-

riod t − 1, both the minimised expected future cost Vt−1(st−1) and the optimal planned

increment x̂t(st−1) to the level of the store for the time period t. Now let the (Markov)

process (Ŝ0, . . . , ŜT ), with Ŝ0 = s0, correspond to the sequence of levels of the opti-

mally controlled store. Then, since this process is random, the optimal planned increment

x̂t(Ŝt−1) for each time period t is not known until the end of the time period t− 1.

However, the solution of the recursion (4) as above, typically require the determination

of each of the functions Vt for all possible values of its argument. We therefore define

a deterministic optimisation problem whose solution s∗ = (s∗0, . . . , s
∗
T ), with s∗0 = s0,

coincides with the optimal control of the store up to the time of the first shock. As we

discuss below, the solution of this optimisation problem is typically computationally much

simpler than the complete solution of recursion (4). However, it is necessary to re-solve

this optimisation problem at the end of each time period in which a shock occurs.

For any vector s = (s0, . . . , sT ) of possible store levels, where s0 is constrained to be the

initial level of the store, and for each t = 1, . . . , T , define

xt(s) = st − st−1. (5)

Define also the optimisation problem:

P: choose s = (s0, . . . , sT ), where again s0 is the initial level of the store, so as to

minimise
T∑
t=1

[Ct(xt(s)) +At(st)] (6)

subject to the capacity constraints

0 ≤ st ≤ E, 1 ≤ t ≤ T, (7)

and the rate constraints

xt(s) ∈ X, 1 ≤ t ≤ T. (8)

Let s∗ = (s∗0, . . . , s
∗
T ), with s∗0 = s0, denote the solution to the above problem P. The

recursion (4) is the dynamic programming recursion for the solution of the problem P and

6



it follows straightforwardly from iteration of (4), using also the terminal condition (2),

that x1(s
∗) achieves the minimisation in (4) for t = 1, i.e. that x1(s

∗) = x̂1(s0) is planned

first increment in the optimal control of the store. Thus, from (5), provided no shock

occurs during the time period 1 so that Ŝ1 = s0 + x̂1(s0), we have also that Ŝ1 = s∗1. More

generally, let the random variable T ′ index the first time period during which a shock does

occur. Then repeated application of the above argument gives immediately the following

result.

Theorem 1. For all t < T ′, we have Ŝt = s∗t .

The solution to the problem P therefore defines the optimal control of the store up to the

end of the time period T ′ defined above. At that time it is necessary to reformulate the

problem P, starting at the end of the time period T ′, instead of at time 0, and replacing the

initial level of the store s0 by the perturbed level ŜT ′ at that time. Iterative application

of this process at the times of successive shocks leads to the dynamically determined

stochastic optimal control—which is exact to the extent that the functions At are known

exactly.

Given that the functions At are known, either exactly or to a sufficiently good approxi-

mation (again see Section 4), the deterministic optimisation problem P may be solved by

using strong Lagrangian techniques to derive a forward algorithm which is computation-

ally much simpler than the use of a dynamic programming approach, and which further

identifies a running planning or forecast horizon. The latter is such that, for each time t

there exists a time t′ > t such that the optimal decision at time t does not depend on the

functions Cu and Au for u > t′. This is proved in [16] for the case in which the functions At
are zero, but the more general result and algorithm may be derived along the same lines.

The existence of such a running forecast horizon further reduces the computation required

in the solution of the problem P and makes the present approach particularly suitable for

the management of storage over a very long or indefinite time period. It further means

that, in an environment in which prices—and so the cost functions Ct—are uncertain, in

order to make the optimal decision at any time t as above it is only necessary to estimate

the cost functions Cu for values of u up to the associated forecast horizon t′. In the case

where, as in the fairly realistic examples of Section 5, the store fills and partially empties

on an approximate daily cycle, the length of this forecast horizon is typically of the order

of a day or two. In practice electricity prices in particular may often be estimated accu-

rately on such time scales, and a deterministic re-optimisation approach, as discussed in

the Introduction, is likely to suffice for the optimal control of the store.

3 Characterisation of optimal solutions

In this section we establish some properties of the functions x̂t(·) defined in the previous

section (as achieving the minimisation in the recursion (4)) and determining the optimal

control of the store.

One case of particular interest is that where the store is a price-taker (i.e. the store is not

so large as to impact itself on market prices), so that, for each t, the cost function Ct is

given by

Ct(x) =

{
c
(b)
t x, if x ≥ 0

c
(s)
t x, if x < 0,

(9)
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where the unit “buying” price c
(b)
t and the unit “selling” price c

(s)
t are such that c

(s)
t ≤ c

(b)
t

(possible inequality resulting, for example, from the round-trip inefficiency of the store—

see the discussion of Section 2.)

Theorem 2 below is a simple result which shows that in the case where buying and selling

prices are equal, and provided rate constraints are nonbinding, the optimal policy is a

“target” policy. That is, for each time period t there exists a target level ŝt such that,

given that the level of the store at the end of the immediately preceding time period is

st−1, the optimal planned level st−1+xt of the store to be achieved during the time period t

is set equal to ŝt, independently of st−1.

Theorem 2. Suppose that, for each t, we have c
(b)
t = c

(s)
t = ct; define

ŝt = arg min
s∈[0,E]

[cts+At(s) + Vt(s)], (10)

where the functions At and Vt are as introduced in Section 2. Then, for each t and for

each st−1, we have x̂t(st−1) = ŝt − st−1 provided only that this quantity belongs to the set

X.

Proof. The recursion (4) here becomes, for each t,

Vt−1(st−1) = min
xt∈X

st−1+xt∈[0,E]

[ctxt +At(st−1 + xt) + Vt(st−1 + xt)] , (11)

and the above minimisation is achieved by xt such that st−1 + xt = ŝt, provided only that

xt ∈ X.

In order to deal with the possibility of rate constraint violation, or the more general price-

taker case where c
(s)
t < c

(b)
t , or the general case where the cost functions Ct are merely re-

quired to be convex, we require the additional assumption of convexity of the functions At.

This condition, while not automatic, is reasonably natural in many applications—see the

examples of Section 5.

Theorem 3. Suppose that, in addition to convexity of the functions Ct, each of the func-

tions At is convex. Then, for each t:

(i) the function Vt−1 is convex;

(ii) x̂t(st−1) is a decreasing function of st−1;

(iii) st−1 + x̂t(st−1) is an increasing function of st−1.

Proof. To show (i) we use backwards induction in time. The function VT is convex.

Suppose that, for any given t ≤ T , the function Vt is convex; we show that the func-

tion Vt−1 is convex. For any given values s
(i)
t−1, i = 1, . . . , n, of st−1 and for any convex

combination s̄t−1 =
∑n

i=1 κis
(i)
t−1, where each κi ≥ 0 and where

∑n
i=1 κi = 1, define also

x̄t =
∑n

i=1 κix̂t(s
(i)
t−1). Note that x̄t ∈ X and that s̄t−1 + x̄t ∈ [0, E]. Then, from (4),

Vt−1(s̄t−1) ≤ Ct(x̄t) +At(s̄t−1 + x̄t) + Vt(s̄t−1 + x̄t)

≤
n∑
i=1

κi

(
Ct(x̂t(s

(i)
t−1)) +At(s

(i)
t−1 + x̂t(s

(i)
t−1)) + Vt(s

(i)
t−1 + x̂t(s

(i)
t−1))

)
=

n∑
i=1

κiVt−1(s
(i)
t−1),
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where the second inequality above follows from the convexity of the functions Ct, At and

Vt (the latter by the inductive hypothesis). Thus Vt−1 is convex as required.

To show (ii) and (iii) we make use of the following result: let f and g be functions defined

on the real line R such that g is convex, and suppose that, for each fixed s, the function

of x ∈ R given by f(x) + g(s+ x) is minimised by x̂(s); then x̂(s) is a decreasing function

of s. To see this, suppose that s1 < s2 and note that, under the given assumptions,

f(x̂(s1)) + g(s1 + x̂(s1)) ≤ f(x) + g(s1 + x), x ∈ R. (12)

The convexity of g implies straightforwardly that

g(s2 + x̂(s1))− g(s2 + x) ≤ g(s1 + x̂(s1))− g(s1 + x), for all x > x̂(s1). (13)

It follows from (12) and (13) that

f(x̂(s1)) + g(s2 + x̂(s1)) ≤ f(x) + g(s2 + x), for all x > x̂(s1).

It now follows from the above that x̂(s2) is (or, in the absence of uniqueness, may be taken

to be) less than or equal to x̂(s1).

The result (ii) of the theorem now follows by applying the above result with the function f

given by Ct and the function g given by At +Vt, since At is assumed convex and, from (i),

Vt is also convex. (That the minimisation in (4) is taken over those x within a closed

interval of the real line causes no problems: for example, this restriction may be formally

dropped by extending the domains of definition of Ct, At and Vt to the entire real line,

taking them to be infinite outside the intervals on which they are naturally defined.)

The result (iii) of the theorem similarly follows by applying the above general result with

the function f given by At+Vt and the function g given by the convex function Ct (in the

recursion (4) writing Ct(xt) = Ct(−st−1 + (st−1 + xt)) and, for each fixed value of st−1,

regarding the minimisation in (4) as being over the variable st−1 + xt).

Remark 1. Given initial levels s
(1)
0 and s

(2)
0 of the store, let {S(1)

t } and {S(2)
t } (with

S
(1)
0 = s

(1)
0 and S

(2)
0 = s

(2)
0 ) be the respective optimally controlled stochastic processes of

levels of the store—coupled with respect to the underlying stochastic process of shocks.

Suppose we additionally assume that the level of the store immediately following any shock

is an increasing function of the level immediately prior to that shock. It then follows

from (iii) of Theorem 3, that under the conditions of the theorem, if s
(1)
0 ≤ s

(2)
0 then

S
(1)
t ≤ S

(2)
t for all subsequent t. This monotonicity property proves useful in Section 4.

We now return to the price-taker case, in which the cost functions are as defined by (9),

and which corresponds to a store which is not sufficiently large as to have market impact.

Here we prove a strengthened version of Theorem 3. For each t, given that the function At
is convex, define

s
(b)
t = arg min

s∈[0,E]
[c
(b)
t s+At(s) + Vt(s)] (14)

and similarly define

s
(s)
t = arg min

s∈[0,E]
[c
(s)
t s+At(s) + Vt(s)]. (15)

Note that the above convexity assumption and the condition that, for each t, we have

c
(s)
t ≤ c

(b)
t imply that s

(b)
t ≤ s

(s)
t . We now have the following result.
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Theorem 4. Suppose that the cost functions Ct are as given by (9) and that the func-

tions At are convex. Then the optimal policy is given by: for each t and given st−1,

x̂t(st−1) =


min(s

(b)
t − st−1, PI) if st−1 < s

(b)
t ,

0 if s
(b)
t ≤ st−1 ≤ s

(s)
t ,

max(s
(s)
t − st−1, −PO) if st−1 > s

(s)
t .

(16)

Proof. For each t, it follows from the convexity of the functions Ct, At and Vt (the latter

by the first part of Theorem 3) that, for st−1 < s
(b)
t the function Ct(xt) +At(st−1 + xt) +

Vt(st−1 + xt) is minimised by xt = s
(b)
t − st−1, for s

(b)
t ≤ st−1 ≤ s

(s)
t it is minimised by

xt = 0, while for st−1 > s
(s)
t , it is minimised by xt = s

(s)
t − st−1. The required result now

follows from the recursion (4) (on again using the convexity of the functions Ct, At and

Vt to account for the rate constraint in that recursion ).

Thus in general in the price-taker case there exists, for each time period t, a “target

interval” [s
(b)
t , s

(s)
t ] such that, if the level of the store at the end of the previous time

period is st−1, the optimal policy is to chose x̂t(st−1) so that st−1 + x̂t(st−1) is the nearest

point (in absolute distance) to st−1 lying within, or as close as possible to, the above

interval. In the case where c
(b)
t = c

(s)
t = ct, the above interval shrinks to the single point ŝt

defined by (10).

These results shed some light on earlier, more applied, papers of Bejan et al [23] and

Gast et al [24], in which the uncertainties in the operation of a energy store result from

errors in wind power forecasts. The model considered in those papers is close to that of

the present paper, as we now describe. The costs of operating the store result (a) from

round-trip inefficiency, which in the formulation of the present paper would be captured by

the cost functions Ct as defined by (9) with c
(s)
t < c

(b)
t and with Ct the same for all t, and

(b) from buffering events, i.e. from failures to meet demand through insufficient energy

available to be supplied from the store when it is needed, and from energy losses through

store overflows. In the formulation of the present paper these costs would be captured

by the functions At. In contrast to the present paper decisions affecting the level of the

store (the amount of conventional generation to schedule for a particular time) are made n

time steps—rather than a single time step—in advance, when wind power is forecast and

conventional generation scheduled. The underlying arguments leading to Theorems 2–4

continue to apply, at least to a good approximation. In particular sample path arguments

suggest that the reduction of round-trip efficiency slows the rate at which the store-level

trajectories—started from different initial levels but with the same stochastic description

of future shock processes—converge over subsequent time. In particular Gast et al [24]

confirm these results empirically, considering round-trip efficiencies less than 1 and noting

that in this case simple “target” policies such as that described by Theorem 2 (which is

applicable in the case of round-trip efficiencies equal to 1) are here suboptimal.

4 Determination of the functions At

We described in Section 2 how, given a knowledge of the functions At defined by (3), the

optimal control of the store may be reduced to the solution of an optimisation problem

which must be re-solved at those randomly occurring times at which shocks occur. In

this section we consider conditions under which the functions At may be thus known,
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either exactly or to good approximations—in all cases without the need for the prior

determination of the functions Vt.

It is convenient to rewrite slightly the definition (3) of each of the functions At as

At(st) = EDt(st) + E[Vt(St(st))− Vt(st)], (17)

and to regard At(st) as the sum of the two given expectations on the right side of (17).

We shall argue below that in many applications it the first of these two expectations,

i.e. EDt(st), that is likely to be much the dominant term on the right side of (17). Since,

for each t and for each st, the distribution of Dt(st) is part of the model specification,

the computation of EDt(st) is straightforward. We do, however, consider below how one

might reasonably obtain this major part of the model specification, i.e. the cost of dealing

with a random shock as a function of the level of the store at the time at which the shock

occurs.

The second expectation on the right side of (17) is the difference between the expected

cost EVt(St(st)) of optimally managing the store subsequent to the time period t (when

the actual level of the store at the end of that time period is then given by the random

variable St(st)) and the corresponding expected cost Vt(st) which would be incurred in the

absence of any shock during the time period t (so that the level of the store at the end of

that time period was then its planned value st). This difference EVt(St(st))− Vt(st) may

also be understood in terms of a coupling of optimally controlled processes, started at the

end of the time period t at the levels St(st) and st, and is the expectation of the difference

of the costs of their optimal control up to the time at which the coupled processes first

agree.

Now consider the somewhat idealised conditions of Theorem 2, where the store is a per-

fectly efficient price-taker, so that each cost function Ct is given by Ct(x) = ctxt for some

market price ct, and where each target level ŝt given by (10) is assumed to be always

achievable. It follows from Theorem 2 that, regardless of any shock which may occur

during any given time period t, the planned level of the store for the end of the time

period t+ 1 is ŝt+1. Hence, from (4),

Vt(St(st))− Vt(st) = Ct+1(st − St(st)), (18)

so that, from (17),

At(st) =

{
EDt(st) + Ct+1(st −ESt(st)), t < T,

EDT (sT ), t = T.
(19)

Thus the functions At may here be determined—in terms of the given distributions of the

random variables Dt(s) and St(s)—without the need to estimate the functions Vt.

More generally, the relations (19) correspond to the modified control in which, following

any shock and hence store level disturbance during any time period t, the disturbed

level St(st) of the store is immediately returned to the planned level st for the end of that

period at a cost Ct+1(st−St(st)); subject to this the store is otherwise optimally managed.

In the absence of this modification, the relations (19) may be viewed as providing a

reasonable first approximation to the functions At—given the difficulties, in applications,

of estimating the both the likelihood and the precise consequences of shocks, it is not clear

that one could do significantly better. Better approximations, if required, might be made

by allowing more time for the disturbed and undisturbed processes to couple as described
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above, and by reasoning as before so as to obtain a more refined version of (19). For

example, one might extend the coupling time until a known future time at which it is

planned that the store will be full. (This is often realistic for electricity storage which may

aim to be full at the end of each night so as to take advantage of much higher daytime

prices—we give examples based on real price data and realistic store characteristics in

Section 5.) Then, for any planned level st of the store at the end of any time period t, the

quantity Vt(St(st))− Vt(st) may be estimated analogously to (18) by considering optimal

controls from the end of the time period t up to the first subsequent time at which the

store is planned to be full.

Finally in the important special case in which shocks are rare but potentially expensive (as

might be the case when the store is required to pay the costs of failing to have sufficient

energy to deal with an emergency), then, for each t and st, the probability that St(st) is

not equal to st is small, and the major contribution to At(st) as defined by (17) is likely to

be EDt(st). In this case either the simple approximation At(st) = EDt(st), or the more

refined approximation given by (19), may well suffice in applications.

In applications there is also a need, as part of the model specification, to realistically

estimate—for each possible planned level st of the store at the end of each time period t—

the joint distribution of the random vector (Dt(st), St(st)) modelling the cost of any shock

and the corresponding store level disturbance. This joint distribution is in general a

function of the amount of energy Yt required to deal with any shock during the time

period t, where in practice the distribution of the random variable Yt may need to be

determined by observation. We consider two particular possibilities, both of which are

natural in the context of modelling risk in power systems, where the focus may either be

on loss of load or on energy unserved (see, for example, [35]):

(i) the cost of a shock occurring during the time period t is simply a constant at > 0

if there is insufficient energy within the store to meet it, and is 0 otherwise; we

then have Dt(st) = atI(Yt > st), where I(·) is the indicator function, and St(st) =

max(0, st − Yt);
(ii) the cost of a shock occurring during the time period t is proportional to the shortfall

in the energy necessary to meet that shock; we then have Dt(st) = a′t max(0, Yt−st),
where a′t is the constant of proportionality, and again St(st) = max(0, st − Yt).

Given the model of Section 2, the functions At may be determined (as described in this sec-

tion) from the specification of the joint distributions of the random vectors (Dt(s), St(s)),

together with the specification of the cost functions Ct and the store characteristics. In

Section 5 we consider some plausible functional forms of the functions At.

5 Examples

We give some examples, in which we solve (exactly) the optimal control problem P for-

mally defined in Section 2. We investigate how the optimal solution depends on the cost

functions Ct and on the functions At which reflect the costs of providing buffering services.

The cost functions Ct are derived from half-hourly electricity prices in the Great Britain

spot market over the entire year 2011, adjusted for a modest degree of market impact, as

described in detail below. Thus we work in half-hour time units, with the time horizon T

corresponding to the number of half-hour periods in the entire year. These spot market

prices show a strong daily cyclical behaviour (corresponding to daily demand variation),

being low at night and high during the day. This price variation can be seen in Figure 1
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Figure 1: GB half-hourly spots prices (£/MWh) for March 2011.

which shows half-hourly GB spot prices (in pounds per megawatt-hour) throughout the

month of March 2011. There is a similar pattern of variation throughout the rest of the

year.

Without loss of generality, we choose energy units such that the rate (power) constraints

are given by PI = PO = 1 unit of energy per half-hour period. For illustration, we take the

capacity of the store to be given by E = 10 units of energy; thus the store can completely

fill or empty over a 5-hour period, which is the case, for example, for the large Dinorwig

pumped storage facility in Snowdonia [36].

We choose cost functions Ct of the form

Ct(x) =

{
ctx(1 + δx), if x ≥ 0

ηctx(1 + δx), if x < 0,
(20)

where the ct are proportional to the half-hourly electricity spot prices referred to above,

where η is an adjustment to selling prices representing in particular round-trip efficiency

as described in Section 2, and where the factor δ > 0 is chosen so as to represent a degree

of market impact (higher unit prices as the store buys more and lower unit prices as the

store sells more). For our numerical examples we take η = 0.85 which is a typical round-

trip efficiency for a pumped-storage facility such as Dinorwig. We choose δ = 0.05; since

the rate constraints for the store are PI = PO = 1 this corresponds to a maximum market

impact of 5%. While this is modest, our results are qualitatively little affected as δ is

varied over a wide range of values less than one, covering therefore the range of possible

market impact likely to be seen for storage in practice.

Finally we need to choose the functions At reflecting the costs of providing buffering

services. Our aim here is to give an understanding of how the optimal control of the
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store varies according to the relative economic importance of cost arbitrage and buffering,

i.e. according to the relative size of the functions Ct and At. We choose functions At
which are constant over time t and of the form At(s) = ae−κs and At(s) = b/s for a

small selection of the parameters a, κ and b. The extent to which a store might provide

buffering services in applications is extremely varied, and so the likely balance between

arbitrage and buffering cannot be specified in advance. Rather we choose just sufficient

values of the above parameters to show the effect of varying this balance. For a possible

justification of the chosen forms of the functions At, see Section 4; in particular the form

At(s) = ae−κs is plausible in the case of light-tailed shocks, while the form At(s) = b/s

shows the effect of a slow rate of decay in s. (Note that in these examples we allow that the

functions At should not necessarily be constant for values of their arguments greater than

the rate constraint of 1: it is plausible that in practice greater quantities in store than can

immediately be discharged to deal with a shock may nevertheless assist in dealing with its

ongoing effects at subsequent times and, in the event of such a shock, may be considered

as being notionally set aside for this purpose.)

In each of our examples, we determine the optimal control of the store over the entire year,

with both the initial level S∗0 and the final level S∗T given by S∗0 = S∗T = 0. Figure 2 shows

this optimal control (the sequence of successive levels of the store) for the time window

corresponding to the month of March for each of the four cases At(s) = 0, At(s) = e−s,

At(s) = 10e−s, and At(s) = 1/s. In each case the corresponding running forward horizon,

as defined in Section 2, is generally of the order of a day or two. (Recall that the cost

functions for March are determined by the prices illustrated in Figure 1. Although the

optimal control is determined over the entire year, it may be verified empirically that in

every case the restriction of this optimal control to any given time window is independent

of the functions Ct and At for times t which are outside of a period which includes this

time window and a few days on either side of it.)

The case At(s) = 0 corresponds to the store incurring no penalty for failing to provide

buffering services and optimising its control solely on the basis of arbitrage between en-

ergy prices at different times. The daily cycle of prices (again see Figure 1) is sufficiently

pronounced that here the store fills and empties—or nearly so—on a daily basis, notwith-

standing the facts that the round-trip efficiency of 0.85 is considerably less than 1 and

that the minimum time for the store to fill or empty is 5 hours.

In the case At(s) = e−s the store is just sufficiently incentivised by the need to reduce

buffering costs that it rarely empties completely (though it does so very occasionally).

Otherwise the behaviour of the store is very similar to that in the case At(s) = 0. In

both the cases At(s) = 10e−s and At(s) = 1/s the costs of failing to provide buffering

services are much higher, and so the optimised level of the store rarely falls below 25% of

its capacity. Note the very similar behaviour in these two cases despite the very different

forms of the “penalty” functions At.
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