26 research outputs found

    Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases

    Get PDF
    The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (A?). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer’s disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that A? is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of A? in the glia limitans in Alzheimer’s disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of A?. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance

    Comments on Johanna Oksala’s Feminist Experiences

    No full text

    Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death

    No full text
    Abstract We investigated the effects of intermittent hypoxia (IH), such as that encountered in severe obstructive sleep apnea (OSA) patients, on the development and severity of myocardial ischemia-related ventricular arrhythmias. Rats were exposed to 14 days of IH (30 s at 5%O2 and 30 s at 21%O2, 8 h·day−1) or normoxia (N, similar air-air cycles) and submitted to a 30-min coronary ligature. Arterial blood pressure (BP) and ECG were recorded for power spectral analysis, ECG interval measurement and arrhythmia quantification. Left ventricular monophasic action potential duration (APD) and expression of L-type calcium (LTCC) and transient receptor potential (TRPC) channels were assessed in adjacent epicardial and endocardial sites. Chronic IH enhanced the incidence of ischemic arrhythmias, in particular ventricular fibrillation (66.7% vs. 33.3% in N rats, p < 0.05). IH also increased BP and plasma norepinephine levels along with increased low-frequency (LF), decreased high-frequency (HF) and increased LF/HF ratio of heart rate and BP variability. IH prolonged QTc and Tpeak-to-Tend intervals, increased the ventricular APD gradient and upregulated endocardial but not epicardial LTCC, TRPC1 and TRPC6 (p < 0.05). Chronic IH, is a major risk factor for sudden cardiac death upon myocardial ischemia through sympathoactivation and alterations in ventricular repolarization, transmural APD gradient and endocardial calcium channel expression

    Role of Knowledge Management in Development and Lifecycle Management of Biopharmaceuticals

    Get PDF
    The final publication is available at Springer via https://doi.org/10.1007/s11095-016-2043-9.Knowledge Management (KM) is a key enabler for achieving quality in a lifecycle approach for production of biopharmaceuticals. Due to the important role that it plays towards successful implementation of Quality by Design (QbD), an analysis of KM solutions is needed. This work provides a comprehensive review of the interface between KM and QbD-driven biopharmaceutical production systems as perceived by academic as well as industrial viewpoints. A comprehensive set of 356 publications addressing the applications of KM tools to QbD-related tasks were screened and a query to gather industrial inputs from 17 major biopharmaceutical organizations was performed. Three KM tool classes were identified as having high relevance for biopharmaceutical production systems and have been further explored: knowledge indicators, ontologies, and process modeling. A proposed categorization of 16 distinct KM tool classes allowed for the identification of holistic technologies supporting QbD. In addition, the classification allowed for addressing the disparity between industrial and academic expectations regarding the application of KM methodologies. This is a first of a kind attempt and thus we think that this paper would be of considerable interest to those in academia and industry that are engaged in accelerating development and commercialization of biopharmaceuticals.Industrial Methods for Process Analytical Chemistry - From Measurement Technologies to Information Systems (imPACts
    corecore