453 research outputs found

    Artificial Intelligence for Computer-Assisted Diagnosis of Hyperplasia in Atlantic Salmon Gill Histology Images

    Get PDF
    Measuring hyperplasia in Atlantic salmon gills can provide valuable insights into fish health. In this study, we propose an innovative technique for classifying histology images to identify regions of hyperplasia. Our pipeline utilises novel signal processing techniques in conjunction with prototypical deep learning methods to analyse image texture. We hypothesise and demonstrate that our method effectively captures distinct features of gill histopathology whole-slide images, thereby enhancing the classification task. Compared to conventional deep learning methods, our hybrid approach exhibits exceptional performance in speed and accuracy. When further developed, the concept can support conventional histopathological assessment by providing a computer-assisted hyperplasia score as an objective quantitative histopathological endpoint. The workflow is translatable to other gill conditions and histopathology images beyond gills

    Artificial Intelligence for Computer-Assisted Diagnosis of Hyperplasia in Atlantic Salmon Gill Histology Images

    Get PDF
    Measuring hyperplasia in Atlantic salmon gills can provide valuable insights into fish health. In this study, we propose an innovative technique for classifying histology images to identify regions of hyperplasia. Our pipeline utilises novel signal processing techniques in conjunction with prototypical deep learning methods to analyse image texture. We hypothesise and demonstrate that our method effectively captures distinct features of gill histopathology whole-slide images, thereby enhancing the classification task. Compared to conventional deep learning methods, our hybrid approach exhibits exceptional performance in speed and accuracy. When further developed, the concept can support conventional histopathological assessment by providing a computer-assisted hyperplasia score as an objective quantitative histopathological endpoint. The workflow is translatable to other gill conditions and histopathology images beyond gills

    The neural engine: a reprogrammable low power platform for closed-loop optogenetics

    Get PDF
    Brain-machine Interfaces (BMI) hold great potential for treating neurological disorders such as epilepsy. Technological progress is allowing for a shift from open-loop, pacemaker-class, intervention towards fully closed-loop neural control systems. Low power programmable processing systems are therefore required which can operate within the thermal window of 2° C for medical implants and maintain long battery life. In this work, we developed a low power neural engine with an optimized set of algorithms which can operate under a power cycling domain. By integrating with custom designed brain implant chip, we have demonstrated the operational applicability to the closed-loop modulating neural activities in in-vitro brain tissues: the local field potentials can be modulated at required central frequency ranges. Also, both a freely-moving non-human primate (24-hour) and a rodent (1-hour) in-vivo experiments were performed to show system long-term recording performance. The overall system consumes only 2.93mA during operation with a biological recording frequency 50Hz sampling rate (the lifespan is approximately 56 hours). A library of algorithms has been implemented in terms of detection, suppression and optical intervention to allow for exploratory applications in different neurological disorders. Thermal experiments demonstrated that operation creates minimal heating as well as battery performance exceeding 24 hours on a freely moving rodent. Therefore, this technology shows great capabilities for both neuroscience in-vitro/in-vivo applications and medical implantable processing units

    The latent stem cell population is retained in the hippocampus of transgenic Huntington's disease mice but not wild-type mice

    Get PDF
    The demonstration of the brain's ability to initiate repair in response to disease or injury has sparked considerable interest in therapeutic strategies to stimulate adult neurogenesis. In this study we examined the effect of a progressive neurodegenerative condition on neural precursor activity in the subventricular zone (SVZ) and hippocampus of the R6/1 transgenic mouse model of Huntington's disease (HD). Our results revealed an age-related decline in SVZ precursor numbers in both wild-type (WT) and HD mice. Interestingly, hippocampal precursor numbers declined with age in WT mice, although we observed maintenance in hippocampal precursor number in the HD animals in response to advancement of the disease. This maintenance was consistent with activation of a recently identified latent hippocampal precursor population. We found that the small latent stem cell population was also maintained in the HD hippocampus at 33 weeks, whereas it was not present in the WT. Our findings demonstrate that, despite a loss of neurogenesis in the HD hippocampus in vivo, there is a unique maintenance of the precursor and stem cells, which may potentially be activated to ameliorate disease symptoms

    Peripheral and central arterial pressure and its relationship to vascular target organ damage in carotid artery, retina and arterial stiffness. Development and validation of a tool. The Vaso risk study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ambulatory blood pressure monitoring (ABPM) shows a better correlation to target organ damage and cardiovascular morbidity-mortality than office blood pressure. A loss of arterial elasticity and an increase in carotid artery intima-media thickness (IMT) has been associated with increased cardiovascular morbidity-mortality. Tools have been developed that allow estimation of the retinal arteriovenous index but not all studies coincide and there are contradictory results in relation to the evolution of the arteriosclerotic lesions and the caliber of the retinal vessels. The purpose of this study is to analyze the relationship between peripheral and central arterial pressure (clinic and ambulatory) and vascular structure and function as evaluated by the carotid artery intima-media thickness, retina arteriovenous index, pulse wave velocity (PWV) and ankle-brachial index in patients with and without type 2 diabetes. In turn, software is developed and validated for measuring retinal vessel thickness and automatically estimating the arteriovenous index.</p> <p>Methods/Design</p> <p>A cross-sectional study involving a control group will be made, with a posterior 4-year follow-up period in primary care. The study patients will be type 2 diabetics, with a control group of non-diabetic individuals. Consecutive sampling will be used to include 300 patients between 34-75 years of age and no previous cardiovascular disease, one-half being assigned to each group. Main measurements: age, gender, height, weight and abdominal circumference. Lipids, creatinine, microalbuminuria, blood glucose, HbA1c, blood insulin, high sensitivity C-reactive protein and endothelial dysfunction markers. Clinic and ambulatory blood pressure monitoring. Carotid ultrasound to evaluate IMT, and retinography to evaluate the arteriovenous index. ECG to assess left ventricle hypertrophy, ankle-brachial index, and pulse wave analysis (PWA) and pulse wave velocity (PWV) with the Sphigmocor System.</p> <p>Discussion</p> <p>We hope to obtain information on the correlation of different ABPM-derived parameters and PWA to organ target damage - particularly vascular structure and function evaluated from the IMT and PWV - and endothelial dysfunction in patients with and without type 2 diabetes. We also hope to demonstrate the usefulness of the instrument developed for the automated evaluation of retinal vascularization in the early detection of alterations in vascular structure and function and in the prognosis of middle-term cardiovascular morbidity.</p> <p>Trial Registration</p> <p>Clinical Trials.gov Identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01325064">NCT01325064</a></p

    Clinical outcomes of seasonal influenza and pandemic influenza A (H1N1) in pediatric inpatients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In April 2009, a novel influenza A H1N1 (nH1N1) virus emerged and spread rapidly worldwide. News of the pandemic led to a heightened awareness of the consequences of influenza and generally resulted in enhanced infection control practices and strengthened vaccination efforts for both healthcare workers and the general population. Seasonal influenza (SI) illness in the pediatric population has been previously shown to result in significant morbidity, mortality, and substantial hospital resource utilization. Although influenza pandemics have the possibility of resulting in considerable illness, we must not ignore the impact that we can experience annually with SI.</p> <p>Methods</p> <p>We compared the outcomes of pediatric patients ≤18 years of age at a large urban hospital with laboratory confirmed influenza and an influenza-like illness (ILI) during the 2009 pandemic and two prior influenza seasons. The primary outcome measure was hospital length of stay (LOS). All variables potentially associated with LOS based on univariable analysis, previous studies, or hypothesized relationships were included in the regression models to ensure adjustment for their effects.</p> <p>Results</p> <p>There were 133 pediatric cases of nH1N1 admitted during 2009 and 133 cases of SI admitted during the prior 2 influenza seasons (2007-8 and 2008-9). Thirty-six percent of children with SI and 18% of children with nH1N1 had no preexisting medical conditions (p = 0.14). Children admitted with SI had 1.73 times longer adjusted LOS than children admitted for nH1N1 (95% CI 1.35 - 2.13). There was a trend towards more children with SI requiring mechanical ventilation compared with nH1N1 (16 vs.7, p = 0.08).</p> <p>Conclusions</p> <p>This study strengthens the growing body of evidence demonstrating that SI results in significant morbidity in the pediatric population. Pandemic H1N1 received considerable attention with strong media messages urging people to undergo vaccination and encouraging improved infection control efforts. We believe that this attention should become an annual effort for SI. Strong unified messages from health care providers and the media encouraging influenza vaccination will likely prove very useful in averting some of the morbidity related to influenza for future epidemics.</p

    Calculating Stage Duration Statistics in Multistage Diseases

    Get PDF
    Many human diseases are characterized by multiple stages of progression. While the typical sequence of disease progression can be identified, there may be large individual variations among patients. Identifying mean stage durations and their variations is critical for statistical hypothesis testing needed to determine if treatment is having a significant effect on the progression, or if a new therapy is showing a delay of progression through a multistage disease. In this paper we focus on two methods for extracting stage duration statistics from longitudinal datasets: an extension of the linear regression technique, and a counting algorithm. Both are non-iterative, non-parametric and computationally cheap methods, which makes them invaluable tools for studying the epidemiology of diseases, with a goal of identifying different patterns of progression by using bioinformatics methodologies. Here we show that the regression method performs well for calculating the mean stage durations under a wide variety of assumptions, however, its generalization to variance calculations fails under realistic assumptions about the data collection procedure. On the other hand, the counting method yields reliable estimations for both means and variances of stage durations. Applications to Alzheimer disease progression are discussed

    Implementation of Guidelines for the Management of Arterial Hypertension. The Impulsion Study

    Get PDF
    This study assessed the effects of a pilot best practice implementation enhancement program on the control of hypertension. We enrolled 697 consecutive known hypertensive patients with other vascular risk factors but free from overt vascular disease. There was no “control” group because it was considered unethical to deprive high-risk patients from “best medical treatment”. Following a baseline visit, previously trained physicians aimed to improve adherence to lifestyle measures and drug treatment for hypertension and other vascular risk factors. Both at baseline and at study completion (after 6 months), a 1-page form was completed showing if patients achieved treatment targets. If not, the reasons why were recorded. This program enhanced compliance with lifestyle measures and increased the use of evidence-based medication. There was a substantial increase in the number of patients who achieved treatment targets for blood pressure (p<0.0001) and other vascular risk factors. In non-diabetic patients (n=585), estimated vascular risk (PROCAM risk engine) was significantly reduced by 41% (p<0.0001). There was also a 12% reduction in vascular risk according to the Framingham risk engine but this did not achieve significance (p=0.07). In conclusion, this is the first study to increase adherence to multiple interventions in hypertensive patients on an outpatient basis, both in primary care and teaching hospitals. Simple, relatively low cost measures (e.g. educating physicians and patients, distributing printed guidelines/brochures and completing a 1-page form) motivated both physicians and patients to achieve multiple treatment goals. Further work is needed to establish if the improvement observed is sustained. [ClinicalTrials.gov NCT00416611]
    corecore