21,324 research outputs found
Sum-of-squares lower bounds for planted clique
Finding cliques in random graphs and the closely related "planted" clique
variant, where a clique of size k is planted in a random G(n, 1/2) graph, have
been the focus of substantial study in algorithm design. Despite much effort,
the best known polynomial-time algorithms only solve the problem for k ~
sqrt(n).
In this paper we study the complexity of the planted clique problem under
algorithms from the Sum-of-squares hierarchy. We prove the first average case
lower bound for this model: for almost all graphs in G(n,1/2), r rounds of the
SOS hierarchy cannot find a planted k-clique unless k > n^{1/2r} (up to
logarithmic factors). Thus, for any constant number of rounds planted cliques
of size n^{o(1)} cannot be found by this powerful class of algorithms. This is
shown via an integrability gap for the natural formulation of maximum clique
problem on random graphs for SOS and Lasserre hierarchies, which in turn follow
from degree lower bounds for the Positivestellensatz proof system.
We follow the usual recipe for such proofs. First, we introduce a natural
"dual certificate" (also known as a "vector-solution" or "pseudo-expectation")
for the given system of polynomial equations representing the problem for every
fixed input graph. Then we show that the matrix associated with this dual
certificate is PSD (positive semi-definite) with high probability over the
choice of the input graph.This requires the use of certain tools. One is the
theory of association schemes, and in particular the eigenspaces and
eigenvalues of the Johnson scheme. Another is a combinatorial method we develop
to compute (via traces) norm bounds for certain random matrices whose entries
are highly dependent; we hope this method will be useful elsewhere
New Approximability Results for the Robust k-Median Problem
We consider a robust variant of the classical -median problem, introduced
by Anthony et al. \cite{AnthonyGGN10}. In the \emph{Robust -Median problem},
we are given an -vertex metric space and client sets . The objective is to open a set of
facilities such that the worst case connection cost over all client sets is
minimized; in other words, minimize . Anthony
et al.\ showed an approximation algorithm for any metric and
APX-hardness even in the case of uniform metric. In this paper, we show that
their algorithm is nearly tight by providing
approximation hardness, unless . This hardness result holds even for uniform and line
metrics. To our knowledge, this is one of the rare cases in which a problem on
a line metric is hard to approximate to within logarithmic factor. We
complement the hardness result by an experimental evaluation of different
heuristics that shows that very simple heuristics achieve good approximations
for realistic classes of instances.Comment: 19 page
Frequency-dependent polarizabilities of alkali atoms from ultraviolet through infrared spectral regions
We present results of first-principles calculations of the
frequency-dependent polarizabilities of all alkali atoms for light in the
wavelength range 300-1600 nm, with particular attention to wavelengths of
common infrared lasers. We parameterize our results so that they can be
extended accurately to arbitrary wavelengths above 800 nm. This work is
motivated by recent experiments involving simultaneous optical trapping of two
different alkali species. Our data can be used to predict the oscillation
frequencies of optically-trapped atoms, and particularly the ratios of
frequencies of different species held in the same trap. We identify wavelengths
at which two different alkali atoms have the same oscillation frequency.Comment: 6 pages, 2 figure
Strong inapproximability of the shortest reset word
The \v{C}ern\'y conjecture states that every -state synchronizing
automaton has a reset word of length at most . We study the hardness
of finding short reset words. It is known that the exact version of the
problem, i.e., finding the shortest reset word, is NP-hard and coNP-hard, and
complete for the DP class, and that approximating the length of the shortest
reset word within a factor of is NP-hard [Gerbush and Heeringa,
CIAA'10], even for the binary alphabet [Berlinkov, DLT'13]. We significantly
improve on these results by showing that, for every , it is NP-hard
to approximate the length of the shortest reset word within a factor of
. This is essentially tight since a simple -approximation
algorithm exists.Comment: extended abstract to appear in MFCS 201
State-insensitive bichromatic optical trapping
We propose a scheme for state-insensitive trapping of neutral atoms by using
light with two independent wavelengths. In particular, we describe the use of
trapping and control lasers to minimize the variance of the potential
experienced by a trapped Rb atom in ground and excited states. We present
calculated values of wavelength pairs for which the 5s and 5p_{3/2} levels have
the same ac Stark shifts in the presence of two laser fields.Comment: 5 pages, 4 figure
- …
