21,324 research outputs found

    Sum-of-squares lower bounds for planted clique

    Full text link
    Finding cliques in random graphs and the closely related "planted" clique variant, where a clique of size k is planted in a random G(n, 1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynomial-time algorithms only solve the problem for k ~ sqrt(n). In this paper we study the complexity of the planted clique problem under algorithms from the Sum-of-squares hierarchy. We prove the first average case lower bound for this model: for almost all graphs in G(n,1/2), r rounds of the SOS hierarchy cannot find a planted k-clique unless k > n^{1/2r} (up to logarithmic factors). Thus, for any constant number of rounds planted cliques of size n^{o(1)} cannot be found by this powerful class of algorithms. This is shown via an integrability gap for the natural formulation of maximum clique problem on random graphs for SOS and Lasserre hierarchies, which in turn follow from degree lower bounds for the Positivestellensatz proof system. We follow the usual recipe for such proofs. First, we introduce a natural "dual certificate" (also known as a "vector-solution" or "pseudo-expectation") for the given system of polynomial equations representing the problem for every fixed input graph. Then we show that the matrix associated with this dual certificate is PSD (positive semi-definite) with high probability over the choice of the input graph.This requires the use of certain tools. One is the theory of association schemes, and in particular the eigenspaces and eigenvalues of the Johnson scheme. Another is a combinatorial method we develop to compute (via traces) norm bounds for certain random matrices whose entries are highly dependent; we hope this method will be useful elsewhere

    New Approximability Results for the Robust k-Median Problem

    Full text link
    We consider a robust variant of the classical kk-median problem, introduced by Anthony et al. \cite{AnthonyGGN10}. In the \emph{Robust kk-Median problem}, we are given an nn-vertex metric space (V,d)(V,d) and mm client sets {SiV}i=1m\set{S_i \subseteq V}_{i=1}^m. The objective is to open a set FVF \subseteq V of kk facilities such that the worst case connection cost over all client sets is minimized; in other words, minimize maxivSid(F,v)\max_{i} \sum_{v \in S_i} d(F,v). Anthony et al.\ showed an O(logm)O(\log m) approximation algorithm for any metric and APX-hardness even in the case of uniform metric. In this paper, we show that their algorithm is nearly tight by providing Ω(logm/loglogm)\Omega(\log m/ \log \log m) approximation hardness, unless NPδ>0DTIME(2nδ){\sf NP} \subseteq \bigcap_{\delta >0} {\sf DTIME}(2^{n^{\delta}}). This hardness result holds even for uniform and line metrics. To our knowledge, this is one of the rare cases in which a problem on a line metric is hard to approximate to within logarithmic factor. We complement the hardness result by an experimental evaluation of different heuristics that shows that very simple heuristics achieve good approximations for realistic classes of instances.Comment: 19 page

    Frequency-dependent polarizabilities of alkali atoms from ultraviolet through infrared spectral regions

    Full text link
    We present results of first-principles calculations of the frequency-dependent polarizabilities of all alkali atoms for light in the wavelength range 300-1600 nm, with particular attention to wavelengths of common infrared lasers. We parameterize our results so that they can be extended accurately to arbitrary wavelengths above 800 nm. This work is motivated by recent experiments involving simultaneous optical trapping of two different alkali species. Our data can be used to predict the oscillation frequencies of optically-trapped atoms, and particularly the ratios of frequencies of different species held in the same trap. We identify wavelengths at which two different alkali atoms have the same oscillation frequency.Comment: 6 pages, 2 figure

    Strong inapproximability of the shortest reset word

    Full text link
    The \v{C}ern\'y conjecture states that every nn-state synchronizing automaton has a reset word of length at most (n1)2(n-1)^2. We study the hardness of finding short reset words. It is known that the exact version of the problem, i.e., finding the shortest reset word, is NP-hard and coNP-hard, and complete for the DP class, and that approximating the length of the shortest reset word within a factor of O(logn)O(\log n) is NP-hard [Gerbush and Heeringa, CIAA'10], even for the binary alphabet [Berlinkov, DLT'13]. We significantly improve on these results by showing that, for every ϵ>0\epsilon>0, it is NP-hard to approximate the length of the shortest reset word within a factor of n1ϵn^{1-\epsilon}. This is essentially tight since a simple O(n)O(n)-approximation algorithm exists.Comment: extended abstract to appear in MFCS 201

    State-insensitive bichromatic optical trapping

    Full text link
    We propose a scheme for state-insensitive trapping of neutral atoms by using light with two independent wavelengths. In particular, we describe the use of trapping and control lasers to minimize the variance of the potential experienced by a trapped Rb atom in ground and excited states. We present calculated values of wavelength pairs for which the 5s and 5p_{3/2} levels have the same ac Stark shifts in the presence of two laser fields.Comment: 5 pages, 4 figure
    corecore