31,494 research outputs found

    Bose-Einstein condensates in `giant' toroidal magnetic traps

    Get PDF
    The experimental realisation of gaseous Bose-Einstein condensation (BEC) in 1995 sparked considerable interest in this intriguing quantum fluid. Here we report on progress towards the development of an 87Rb BEC experiment in a large (~10cm diameter) toroidal storage ring. A BEC will be formed at a localised region within the toroidal magnetic trap, from whence it can be launched around the torus. The benefits of the system are many-fold, as it should readily enable detailed investigations of persistent currents, Josephson effects, phase fluctuations and high-precision Sagnac or gravitational interferometry.Comment: 5 pages, 3 figures (Figs. 1 and 2 now work

    Spatial interference from well-separated condensates

    Get PDF
    We use magnetic levitation and a variable-separation dual optical plug to obtain clear spatial interference between two condensates axially separated by up to 0.25 mm -- the largest separation observed with this kind of interferometer. Clear planar fringes are observed using standard (i.e. non-tomographic) resonant absorption imaging. The effect of a weak inverted parabola potential on fringe separation is observed and agrees well with theory.Comment: 4 pages, 5 figures - modified to take into account referees' improvement

    The Abelianization of QCD Plasma Instabilities

    Full text link
    QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high energy). It is important to understand what non-linear physics eventually stops the exponential growth of unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely parallels that in QED. However, once the unstable modes of the gauge-fields grow large enough for non-Abelian interactions between them to become important, one might guess that the dynamics of QCD plasma instabilities and QED plasma instabilities become very different. In this paper, we give suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective at stopping instability growth, and that the growing non-Abelian gauge fields become approximately Abelian after a certain stage in their growth. This in turn suggests that understanding the development of QCD plasma instabilities in the non-linear regime may have close parallels to similar processes in traditional plasma physics. We conjecture that the physics of collisionless plasma instabilities in SU(2) and SU(3) gauge theory becomes equivalent, respectively, to (i) traditional plasma physics, which is U(1) gauge theory, and (ii) plasma physics of U(1)x U(1) gauge theory.Comment: 36 pages; 15 figures [minor changes made to text, and new figure added, to reflect published version

    A weakly random Universe?

    Full text link
    The cosmic microwave background (CMB) radiation is characterized by well-established scales, the 2.7 K temperature of the Planckian spectrum and the 10510^{-5} amplitude of the temperature anisotropy. These features were instrumental in indicating the hot and equilibrium phases of the early history of the Universe and its large scale isotropy, respectively. We now reveal one more intrinsic scale in CMB properties. We introduce a method developed originally by Kolmogorov, that quantifies a degree of randomness (chaos) in a set of numbers, such as measurements of the CMB temperature in some region. Considering CMB as a composition of random and regular signals, we solve the inverse problem of recovering of their mutual fractions from the temperature sky maps. Deriving the empirical Kolmogorov's function in the Wilkinson Microwave Anisotropy Probe's maps, we obtain the fraction of the random signal to be about 20 per cent, i.e. the cosmological sky is a weakly random one. The paper is dedicated to the memory of Vladimir Arnold (1937-2010).Comment: 4 pages, 3 figs, A & A (Lett) in press; to match the published versio

    Mean-field dynamics of a non-Hermitian Bose-Hubbard dimer

    Full text link
    We investigate an NN-particle Bose-Hubbard dimer with an additional effective decay term in one of the sites. A mean-field approximation for this non-Hermitian many-particle system is derived, based on a coherent state approximation. The resulting nonlinear, non-Hermitian two-level dynamics, in particular the fixed point structures showing characteristic modifications of the self-trapping transition, are analyzed. The mean-field dynamics is found to be in reasonable agreement with the full many-particle evolution.Comment: 4 pages, 3 figures, published versio

    Vortex line representation for flows of ideal and viscous fluids

    Get PDF
    It is shown that the Euler hydrodynamics for vortical flows of an ideal fluid coincides with the equations of motion of a charged {\it compressible} fluid moving due to a self-consistent electromagnetic field. Transition to the Lagrangian description in a new hydrodynamics is equivalent for the original Euler equations to the mixed Lagrangian-Eulerian description - the vortex line representation (VLR). Due to compressibility of a "new" fluid the collapse of vortex lines can happen as the result of breaking (or overturning) of vortex lines. It is found that the Navier-Stokes equation in the vortex line representation can be reduced to the equation of the diffusive type for the Cauchy invariant with the diffusion tensor given by the metric of the VLR

    On Koopman-von Neumann Waves II

    Full text link
    In this paper we continue the study, started in [1], of the operatorial formulation of classical mechanics given by Koopman and von Neumann (KvN) in the Thirties. In particular we show that the introduction of the KvN Hilbert space of complex and square integrable "wave functions" requires an enlargement of the set of the observables of ordinary classical mechanics. The possible role and the meaning of these extra observables is briefly indicated in this work. We also analyze the similarities and differences between non selective measurements and two-slit experiments in classical and quantum mechanics.Comment: 18+1 pages, 1 figure, misprints fixe

    Investigating a simple model of cutaneous wound healing angiogenesis

    Get PDF
    A simple model of wound healing angiogenesis is presented, and investigated using numerical and asymptotic techniques. The model captures many key qualitative features of the wound healing angiogenic response, such as the propagation of a structural unit into the wound centre. A detailed perturbative study is pursued, and is shown to capture all features of the model. This enables one to show that the level of the angiogenic response predicted by the model is governed to a good approximation by a small number of parameter groupings. Further investigation leads to predictions concerning how one should select between potential optimal means of stimulating cell proliferation in order to increase the level of the angiogenic response

    The weld-brazing metal joining process

    Get PDF
    Superior mechanical properties were obtained in metal joints weld-brazed between faying surfaces. Weld-braze applications and advantages are listed

    Development of aircraft lavatory compartments with improved fire resistance characteristics, phase 1: Fire containment test of a wide body aircraft lavatory module

    Get PDF
    A test was conducted to evaluate the fire containment characteristics of a Boeing 747 lavatory module. Results showed that the fire was contained within the lavatory during the 30-minute test period with the door closed. The resistance of the lavatory wall and ceiling panels and general lavatory construction to burn-through under the test conditions was demonstrated
    corecore