8,884 research outputs found

    Baroclinic instability with variable gravity: A perturbation analysis

    Get PDF
    Solutions for a quasigeostrophic baroclinic stability problem in which gravity is a function of height were obtained. Curvature and horizontal shear of the basic state flow were omitted and the vertical and horizontal temperature gradients of the basic state were taken as constant. The effect of a variable dielectric body force, analogous to gravity, on baroclinic instability for the design of a spherical, baroclinic model for Spacelab was determined. Such modeling could not be performed in a laboratory on the Earth's surface because the body force could not be made strong enough to dominate terrestrial gravity. A consequence of the body force variation and the preceding assumptions was that the potential vorticity gradient of the basic state vanished. The problem was solved using a perturbation method. The solution gives results which are qualitatively similar to Eady's results for constant gravity; a short wavelength cutoff and a wavelength of maximum growth rate were observed. The averaged values of the basic state indicate that both the wavelength range of the instability and the growth rate at maximum instability are increased. Results indicate that the presence of the variable body force will not significantly alter the dynamics of the Spacelab experiment. The solutions are also relevant to other geophysical fluid flows where gravity is constant but the static stability or Brunt-Vaisala frequency is a function of height

    Self-dual formulations of d=3 gravity theories in the path-integral framework

    Full text link
    We study the connection, at the quantum level, between d=2+1 dimensional self-dual models with actions of growing (from first to fourth) order, governing the dynamics of helicity +2 (or -2) massive excitations. We obtain identities between generating functionals of the different models using the path-integral framework, this allowing to establish dual maps among relevant vacuum expectation values. We check consistency of these v.e.v.'s with the gauge invariance gained in each mapping.Comment: 26 pages. LaTeX. Minor changes. Published in Int. J Modern Phys. A; http://www.worldscinet.com/ijmp

    Ground state of medium-heavy doubly-closed shell nuclei in correlated basis function theory

    Full text link
    The correlated basis function theory is applied to the study of medium-heavy doubly closed shell nuclei with different wave functions for protons and neutrons and in the jj coupling scheme. State dependent correlations including tensor correlations are used. Realistic two-body interactions of Argonne and Urbana type, together with three-body interactions have been used to calculate ground state energies and density distributions of the 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.Comment: Latex 10 pages, 3 Tables, 10 Figure

    Renormalized Fermi hypernetted chain approach in medium-heavy nuclei

    Full text link
    The application of the Correlated basis function theory and of the Fermi hypernetted chain technique, to the description of the ground state of medium-heavy nuclei is reviewed. We discuss how the formalism, originally developed for symmetric nuclear matter, should be changed in order to describe finite nuclear systems, with different number of protons and neutrons. This approach allows us to describe doubly closed shell nuclei by using microscopic nucleon-nucleon interactions. We presents results of numerical calculations done with two-nucleon interactions of Argonne type,implemented with three-body forces of Urbana type. Our results regard ground-state energies, matter, charge and momentum distributions, natural orbits, occupation numbers, quasi-hole wave functions and spectroscopic factors of 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.Comment: 127 Pages, 37 figures, Accepted for publication in Physics Report

    Soybean cultivar BR-16-AHAS tolerance to the herbicide imazapyr.

    Get PDF
    The objective of this work was to evaluate the effect of the transgenic soybean BR-16-AHAS genetic constitution on the tolerance to the herbicide imazapyr. BR-16-AHAS was crossed with ten other genotypes. The experimental design was a complete randomized block, in a 2x12x3 factorial arrangement, with two sowing periods (winter and summer), twelve crossing groups and three plant positions (upper, mid and lower), with three replicates. The plants were treated with 100 g ha-1 a.i. of imazapyr at the V3/V4 stage. For each position of the plant (upper, mid and lower), the following variables were assessed: number of pods, number of seeds, seed weight, number of seeds per pod and the 100 seeds weight. The effect of the herbicide varied according to the more affected plant position (upper, mid and lower) of each genotype. The use of the same gene ahas of BR-16-AHAS, in various genotypes, results in materials with good tolerance to imazapyr; tolerance levels depend not only on the ahas gene, but also on the presence of other genes

    Momentum distributions and spectroscopic factors of doubly-closed shell nuclei in correlated basis function theory

    Get PDF
    The momentum distributions, natural orbits, spectroscopic factors and quasi-hole wave functions of the C12, O16, Ca40, Ca48, and Pb208 doubly closed shell nuclei, have been calculated in the framework of the Correlated Basis Function theory, by using the Fermi hypernetted chain resummation techniques. The calculations have been done by using the realistic Argonne v8' nucleon-nucleon potential, together with the Urbana IX three-body interaction. Operator dependent correlations, which consider channels up to the tensor ones, have been used. We found noticeable effects produced by the correlations. For high momentum values, the momentum distributions show large enhancements with respect to the independent particle model results. Natural orbits occupation numbers are depleted by about the 10\% with respect to the independent particle model values. The effects of the correlations on the spectroscopic factors are larger on the more deeply bound states.Comment: Modified version of the previous paper (there are new figures). The paper has been accepted for publication in Physical Review

    Behavior of soybean genotypes transformed with the AHAS gene wich confers tolerance to the herbicide imazapyr.

    Get PDF
    The transformation of the soybean cultivars BR-16 and Doko with the AHAS gene resulted in the development of imazapyr-tolerant herbicide genotypes. A winter greenhouse trial was conducted in order to compare the conventional genotypes BR-16 and Doko with their transformed counterparts under imazapyr applications. Some aspects (number of pods and seeds weight) were evaluated and observations showed that genotype BR-16-AHAS compared to their conventional counterparts. Another experiment was conducted with the two transformed genotypes (AHAS) at a dosage of zero and 100 g i.a. ha-1 imazapyr application in the summer. The relative responses of the two genotypes were similar to the winter results but the herbicide effects differed regarding mainly the most affected position in each genotype. The herbicide imazapyr applied (100 g. i.a. ha-1) onto AHAS gene-transformed plants may induce the development of sterile pods. The herbicide and not the inserted gene is responsible for this effect
    corecore