52 research outputs found

    Core-shell nano-architectures: the incorporation mechanism of hydrophobic nanoparticles into the aqueous core of a microemulsion

    No full text
    This work presents an in-depth investigation of the molecular interactions in the incorporation mechanism of colloidal hydrophobic-capped nanoparticles into the hydrophilic core of reverse microemulsions. 1H Nuclear Magnetic Resonance (NMR) was employed to obtain molecular level details of the interaction between the nanoparticles capping amphiphiles and the microemulsion surfactants. The model system of choice involved oleic acid (OAC) and oleylamine (OAM) as capping molecules, while igepal-CO520 was the surfactant. The former were studied both in their ‘‘free’’ state and ‘‘ligated’’ one, i.e., bound to nanoparticles. The latter was investigated either in cyclohexane (micellar solution) or in water/cyclohexane microemulsions. The approach was extremely useful to gain a deeper understanding of the equilibria involved in this complex system (oleic acid capped-Bi2S3 in igepal/water/cyclohexane microemulsions). In difference to previously proposed mechanisms, the experimental data showed that the high affinity of the capping ligands for the reverse micelle interior was the driving force for the incorporation of the nanoparticles. A simple ligand-exchange mechanism could be ruled out. The collected information about the nanoparticle incorporation mechanism is extremely useful to develop new synthetic routes with an improved/tuned coating efficiency, in order to tailor the core–shell structure preparation

    Predictive method for correct identification of archaeological charred grape seeds: Support for advances in knowledge of grape domestication process

    Get PDF
    The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340°C for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017-1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plant

    Colloidal synthesis and characterization of Bi2S3 nanoparticles for photovoltaic applications

    Get PDF
    Bismuth sulfide is a promising n-type semiconductor for solar energy conversion. We have explored the colloidal synthesis of Bi2S3 nanocrystals, with the aim of employing them in the fabrication of solution-processable solar cells and to replace toxic heavy metals chalcogenides like PbS or CdS, that are currently employed in such devices. We compare different methods to obtain Bi2S3 colloidal quantum dots, including the use of environmentally benign reactants, through organometallic synthesis. Different sizes and shapes were obtained according to the synthesis parameters and the growth process has been rationalized by comparing the predicted morphology with systematic physical-chemistry characterization of nanocrystals by X-ray diffraction, FT-IR spectroscopy, Transmission Electron Microscopy (TEM)

    Helichrysum microphyllum subsp. tyrrhenicum, Its Root-Associated Microorganisms, and Wood Chips Represent an Integrated Green Technology for the Remediation of Petroleum Hydrocarbon-Contaminated Soils

    Get PDF
    Phytoremediation and the use of suitable amendments are well-known technologies for the mitigation of petroleum hydrocarbon (PHC) contaminations in terrestrial ecosystems. Our study is aimed at combining these two approaches to maximize their favorable effects. To this purpose, Helichrysum microphyllum subsp. tyrrhenicum, a Mediterranean shrub growing on sandy and semiarid soils, was selected. The weathered PHC-polluted matrix (3.3 ± 0.8 g kg−1 dry weight) from a disused industrial site was employed as the cultivation substrate with (WCAM) or without (UNAM) the addition and mixing of wood chips. Under the greenhouse conditions, the species showed a survival rate higher than 90% in the UNAM while the amendment administration restored the totality of the plant survival. At the end of the greenhouse test (nine months), the treatment with the wood chips significantly increased the moisture, dehydrogenase activity and abundance of the microbial populations of the PHC degraders in the substrate. Cogently, the residual amount of PHCs was significantly lower in the UNAM (3–92% of the initial quantity) than in the WCAM (3–14% of the initial quantity). Moreover, the crown diameter was significantly higher in the WCAM plants. Overall, the results establish the combined technology as a novel approach for landscaping and the bioremediation of sites chronically injured by PHC-weathered contaminations

    Spherical nanoporous assemblies of iso-oriented cobalt ferrite nanoparticles:synthesis, microstructure and magnetic properties

    No full text
    Nanoporous spherical assemblies of iso-oriented cobalt ferrite nanoparticles with a high surface area were prepared via a normal micelles process. The spherical magnetic assemblies were coated with a silica layer through an inverse micelles route. The microstructure and morphology were studied by X-ray diffraction, transmission electron microscopy and N 2-physisorption techniques. The primary CoFe 2O 4 nanocrystalline particles (∼7 nm) assemble into spherical nanoporous aggregates with an average size of about 50-60 nm and the coating process leads to core-shell nanostructures with an amorphous 7-8 nm thick silica shell that covers the spherical assemblies homogeneously. The magnetic properties of both uncoated and silica-coated nanostructures were also investigate

    Bifunctional FePt@MWCNTs/Ru nanoarchitectures: Synthesis and characterization

    No full text
    The synthesis of novel nanoarchitectures is an important way to combine several properties into the same nanometric object. Magnetic, catalytic, optical, and electrical properties can be embedded and used for heating, moving, or monitoring the nanocomposite. Following this approach, smart materials exhibiting remarkable properties could be obtained. Several nanocomposites are based on carbon nanotubes (CNTs). Because of the presence of empty cavities and very large surface external area, this allotropic form of carbon is especially suitable for this purpose and particularly for catalytic applications. In this work, a new general strategy to synthesize by a wet method three-block, smart nanocomposites based on MWCNTs is described. The new bifunctional material is shortly referred to as FePt@MWCNTs/Ru(NPs) to point out that nanoparticles (NPs) of a magnetically soft alloy (FePt fcc) fill the MWCNTs cavity, whereas catalytic Ru NPs decorate the external wall. In this way well separated catalytic and magnetic NPs are obtained. All the synthetic steps are described in detail. TEM, HRTEM, XRD, and magnetic measurements by VSM are used to monitor all the steps and to prove the effectiveness of the metho

    Surfactant-assisted route to fabricate CoFe2O4 individual nanoparticles and spherical assemblies

    No full text
    A surfactant-assisted route in aqueous media has been shown to be suitable to prepare either individual primary CoFe2O4 nanocrystals or secondary spherical nanoporous assemblies with a high surface area. The formation of primary nanoparticles or of spherical assemblies is found to be dependent on the presence of the surfactant and on the particle size, but is shown that the nanoparticle-surfactant interface plays a dominant role. The size of the primary CoFe2O4 particles is controlled by the type of salt, the synthesis temperature and the concentration of the precursors. A detailed characterization evidences the shape and size of the primary particles, the way in which the primary particles assemble and their features in terms of morphological, textural and magnetic propertie

    Stabilization of the high coercivity epsilon-Fe 23 O phase in the CeO2 - Fe2O3-SiO 2 nanocomposites

    No full text
    We have investigated the processes leading to the formation of the Fe2O3 and CeO2 nanoparticles in the SiO2 matrix in order to stabilize the ϵ-Fe2O3 as the major phase. The samples with two different concentrations of the Fe were prepared by sol-gel method, subsequently annealed at different temperatures up to 1100 °C, and characterized by the Mössbauer spectroscopy, Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (PXRD), Energy dispersive X-ray analysis (EDX) and magnetic measurements. The evolution of the different Fe2O3 phases under various conditions of preparation was investigated, starting with the preferential appearance of the γ-Fe2O3 phase for the sample with low Fe concentration and low annealing temperature and stabilization of the major ϵ-Fe2O3 phase for high Fe concentration and high annealing temperature, coexisting with the most stable α-Fe2O3 phase. A continuous increase of the particle size of the CeO2 nanocrystals with increasing annealing temperature was also observed. The graphical abstract displays the most important results of our work. The significant change of the phase composition due to the variation of preparation conditions is demonstrated. As a result, significant change of the magnetic properties from superparamagnetic γ-Fe2O3 phase with negligible coercivity to the high coercivity ϵ-Fe2O3 phase has been observed. ⺠Research of the stabilization of the high coercivity ϵ-Fe2O3 in CeO2-Fe2O3/SiO2. ⺠Samples with two different concentrations of Fe and three annealing temperatures. ⺠Phase transition γ→ϵ→(β)→α with increasing annealing temperature and particle size. ⺠Elimination of the superparamagnetic phases in samples with higher content of Fe. ⺠Best conditions for high coercivity ϵ-Fe2O3 - higher Fe content and
    corecore