11,952 research outputs found

    Single spin-torque vortex oscillator using combined bottom-up approach and e-beam lithography

    Full text link
    A combined bottom-up assembly of electrodeposited nanowires and electron beam lithography technique has been developed to investigate the spin transfer torque and microwave emission on specially designed nanowires containing a single Co/Cu/Co pseudo spin valve. Microwave signals have been obtained even at zero magnetic field. Interestingly, high frequency vs. magnetic field tunability was demonstrated, in the range 0.4 - 2 MHz/Oe, depending on the orientation of the applied magnetic field relative to the magnetic layers of the pseudo spin valve. The frequency values and the emitted signal frequency as a function of the external magnetic field are in good quantitative agreement with the analytical vortex model as well as with micromagnetic simulations.Comment: 9 pages, 4 figure

    Antisymmetric tensor propagator with spontaneous Lorentz violation

    Full text link
    In this work, we study the spontaneous Lorentz symmetry breaking due to an antisymmetric 2-tensor field in Minkowski spacetime. For a smooth quadratic potential, the spectrum of the theory exhibits massless and massive excitations. We show that the equations of motion for the free field obey some constraints which lead to the massive mode be non-propagating at leading order. Besides, there exists a massless mode in the theory which can be identified with the usual Kalb-Ramond field, carrying only one on-shell degree of freedom. The same conclusion holds when one analyses the pole structure of its Feynman propagator. A new complete set of spin-type operators is found, which was the requirement to evaluate the propagator of the Kalb-Ramond field modified by the presence of a nonzero vacuum expectation value responsible for the Lorentz violation.Comment: 13 pages. Some modifications to match published version in EuroPhysics Letter

    Universal R-C crossover in current-voltage characteristics for unshunted array of overdamped Nb-AlO_x-Nb Josephson junctions

    Full text link
    We report on some unusual behavior of the measured current-voltage characteristics (CVC) in artificially prepared two-dimensional unshunted array of overdamped Nb-AlO_x-Nb Josephson junctions. The obtained nonlinear CVC are found to exhibit a pronounced (and practically temperature independent) crossover at some current I_{cr}=\left(\frac{1}{2\beta_C}-1\right)I_C from a resistance R dominated state with V_R=R\sqrt{I^2-I_C^2} below I_{cr} to a capacitance C dominated state with V_C=\sqrt{\frac{\hbar}{4eC}} \sqrt{I-I_C} above I_{cr}. The origin of the observed behavior is discussed within a single-plaquette approximation assuming the conventional RSJ model with a finite capacitance and the Ambegaokar-Baratoff relation for the critical current of the single junction

    Manifestation of geometric resonance in current dependence of AC susceptibility for unshunted array of Nb-AlOx-Nb Josephson junctions

    Full text link
    A pronounced resonance-like structure has been observed in the current dependence of AC susceptibility for two-dimensional array of unshunted Nb-AlOx-Nb Josephson junctions. Using a single-plaquette approximation, we were able to successfully fit our data assuming that resonance structure is related to the geometric (inductive) properties of the array.Comment: to appear in Physica C (in press

    Dynamical demixing of a binary mixture under sedimentation

    Full text link
    We investigate the sedimentation dynamics of a binary mixture, the species of which differ by their Stokes coefficients but are identical otherwise. We analyze the sedimentation dynamics and the morphology of the final deposits using Brownian dynamics simulations for mixtures with a range of sedimentation velocities of both species. We found a threshold in the sedimentation velocities difference above which the species in the final deposit are segregated. The degree of segregation increases with the difference in the Stokes coefficients or the sedimentation velocities above the threshold. We propose a simple mean-field model that captures the main features of the simulated deposits

    Dynamical Symmetry Breaking With a Fourth Generation

    Full text link
    Adding a fourth generation to the Standard Model and assuming it to be valid up to some cutoff \Lambda, we show that electroweak symmetry is broken by radiative corrections due to the fourth generation. The effects of the fourth generation are isolated using a Lagrangian with a genuine scalar without self-interactions at the classical level. For masses of the fourth generation consistent with electroweak precision data (including the B \rightarrow K \pi\ CP asymmetries) we obtain a Higgs mass of the order of a few hundreds GeV and a cutoff \Lambda\ around 1-2 TeV. We study the reliability of the perturbative treatment used to obtain these results taking into account the running of the Yukawa couplings of the fourth quark generation with the aid of the Renormalization Group (RG) equations, finding similar allowed values for the Higgs mass but a slightly lower cut-off due to the breaking of the perturbative regime. Such low cut-off means that the effects of new physics needed to describe electroweak interactions at energy above \Lambda\ should be measurable at the LHC. We use the minimal supersymmetric extension of the standard model with four generations as an explicit example of models realizing the dynamical electroweak symmetry breaking by radiative corrections and containing new physics. Here, the cutoff is replaced by the masses of the squarks and electroweak symmetry breaking by radiative corrections requires the squark masses to be of the order of 1 TeV.Comment: 20 pages, 7 figures. New section adde

    Deciphering M-T diagram of shape memory Heusler alloys: reentrance, plateau and beyond

    Full text link
    We present our recent results on temperature behaviour of magnetization observed in Ni_47Mn_39In_14 Heusler alloys. Three regions can be distinguished in the M-T diagram: (I) low temperature martensitic phase (with the Curie temperature T_CM = 140 K), (II) intermediate mixed phase (with the critical temperature T_MS = 230 K) exhibiting a reentrant like behavior (between T_CM and T_MS) and (III) high temperature austenitic phase (with the Curie temperature T_CA = 320 K) exhibiting a rather wide plateau region (between T_MS and T_CA). By arguing that powerful structural transformations, causing drastic modifications of the domain structure in alloys, would also trigger strong fluctuations of the order parameters throughout the entire M-T diagram, we were able to successfully fit all the data by incorporating Gaussian fluctuations (both above and below the above three critical temperatures) into the Ginzburg-Landau scenario

    Synchronization and Stability in Noisy Population Dynamics

    Get PDF
    We study the stability and synchronization of predator-prey populations subjected to noise. The system is described by patches of local populations coupled by migration and predation over a neighborhood. When a single patch is considered, random perturbations tend to destabilize the populations, leading to extinction. If the number of patches is small, stabilization in the presence of noise is maintained at the expense of synchronization. As the number of patches increases, both the stability and the synchrony among patches increase. However, a residual asynchrony, large compared with the noise amplitude, seems to persist even in the limit of infinite number of patches. Therefore, the mechanism of stabilization by asynchrony recently proposed by R. Abta et. al., combining noise, diffusion and nonlinearities, seems to be more general than first proposed.Comment: 3 pages, 3 figures. To appear in Phys. Rev.
    corecore