8,262 research outputs found

    Impact of Inter-Country Distances on International Tourism

    Full text link
    Tourism is a worldwide practice with international tourism revenues increasing from US\$495 billion in 2000 to US\$1340 billion in 2017. Its relevance to the economy of many countries is obvious. Even though the World Airline Network (WAN) is global and has a peculiar construction, the International Tourism Network (ITN) is very similar to a random network and barely global in its reach. To understand the impact of global distances on local flows, we map the flow of tourists around the world onto a complex network and study its topological and dynamical balance. We find that although the WAN serves as infrastructural support for the ITN, the flow of tourism does not correlate strongly with the extent of flight connections worldwide. Instead, unidirectional flows appear locally forming communities that shed light on global travelling behaviour inasmuch as there is only a 15% probability of finding bidirectional tourism between a pair of countries. We conjecture that this is a consequence of one-way cyclic tourism by analyzing the triangles that are formed by the network of flows in the ITN. Finally, we find that most tourists travel to neighbouring countries and mainly cover larger distances when there is a direct flight, irrespective of the time it takes

    Theory of Andreev reflection in a two-orbital model of iron-pnictide superconductors

    Full text link
    A recently developed theory for the problem of Andreev reflection between a normal metal (N) and a multiband superconductor (MBS) assumes that the incident wave from the normal metal is coherently transmitted through several bands inside the superconductor. Such splitting of the probability amplitude into several channels is the analogue of a quantum waveguide. Thus, the appropriate matching conditions for the wave function at the N/MBS interface are derived from an extension of quantum waveguide theory. Interference effects between the transmitted waves inside the superconductor manifest themselves in the conductance. We provide results for a FeAs superconductor, in the framework of a recently proposed effective two-band model and two recently proposed gap symmetries: in the sign-reversed s-wave (Δcos(kx)cos(ky)\Delta\cos(k_x)\cos(k_y)) scenario resonant transmission through surface Andreev bound states (ABS) at nonzero energy is found as well as destructive interference effects that produce zeros in the conductance; in the extended s-wave (Δ[cos(kx)+cos(ky)]\Delta[\cos(k_x)+\cos(k_y)]) scenario no ABS at finite energy are found.Comment: 4 pages, 5 figure

    Phase diagram and magnetic collective excitations of the Hubbard model in graphene sheets and layers

    Full text link
    We discuss the magnetic phases of the Hubbard model for the honeycomb lattice both in two and three spatial dimensions. A ground state phase diagram is obtained depending on the interaction strength U and electronic density n. We find a first order phase transition between ferromagnetic regions where the spin is maximally polarized (Nagaoka ferromagnetism) and regions with smaller magnetization (weak ferromagnetism). When taking into account the possibility of spiral states, we find that the lowest critical U is obtained for an ordering momentum different from zero. The evolution of the ordering momentum with doping is discussed. The magnetic excitations (spin waves) in the antiferromagnetic insulating phase are calculated from the random-phase-approximation for the spin susceptibility. We also compute the spin fluctuation correction to the mean field magnetization by virtual emission/absorpion of spin waves. In the large UU limit, the renormalized magnetization agrees qualitatively with the Holstein-Primakoff theory of the Heisenberg antiferromagnet, although the latter approach produces a larger renormalization

    Fracturing highly disordered materials

    Full text link
    We investigate the role of disorder on the fracturing process of heterogeneous materials by means of a two-dimensional fuse network model. Our results in the extreme disorder limit reveal that the backbone of the fracture at collapse, namely the subset of the largest fracture that effectively halts the global current, has a fractal dimension of 1.22±0.011.22 \pm 0.01. This exponent value is compatible with the universality class of several other physical models, including optimal paths under strong disorder, disordered polymers, watersheds and optimal path cracks on uncorrelated substrates, hulls of explosive percolation clusters, and strands of invasion percolation fronts. Moreover, we find that the fractal dimension of the largest fracture under extreme disorder, df=1.86±0.01d_f=1.86 \pm 0.01, is outside the statistical error bar of standard percolation. This discrepancy is due to the appearance of trapped regions or cavities of all sizes that remain intact till the entire collapse of the fuse network, but are always accessible in the case of standard percolation. Finally, we quantify the role of disorder on the structure of the largest cluster, as well as on the backbone of the fracture, in terms of a distinctive transition from weak to strong disorder characterized by a new crossover exponent.Comment: 5 pages, 4 figure

    Gender gap in the ERASMUS mobility program

    Full text link
    Studying abroad has become very popular among students. The ERASMUS mobility program is one of the largest international student exchange programs in the world, which has supported already more than three million participants since 1987. We analyzed the mobility pattern within this program in 2011-12 and found a gender gap across countries and subject areas. Namely, for almost all participating countries, female students are over-represented in the ERASMUS program when compared to the entire population of tertiary students. The same tendency is observed across different subject areas. We also found a gender asymmetry in the geographical distribution of hosting institutions, with a bias of male students in Scandinavian countries. However, a detailed analysis reveals that this latter asymmetry is rather driven by subject and consistent with the distribution of gender ratios among subject areas

    Screening effects in flow through rough channels

    Full text link
    A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome from numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, when inertial effects become relevant, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. In addition, we find that, while the permeability of the random channel follows the usual decrease with Reynolds, our results indicate an unexpected permeability increase for the deterministic case, i.e., ``the rougher the better''. We show that this complex behavior is closely related with the presence and relative intensity of recirculation zones in the reentrant regions of the rough channel.Comment: 4 pages, 5 figure
    corecore