8 research outputs found

    Aspergillus antigen induces robust Th2 cytokine production, inflammation, airway hyperreactivity and fibrosis in the absence of MCP-1 or CCR2

    Get PDF
    BACKGROUND: Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. METHODS: To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. RESULTS: We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. CONCLUSION: We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2

    Other matters

    No full text

    Preservation of biomolecules in breast cancer tissue by a formalin-free histology system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The potential problems associated with the use of formalin in histology, such as health hazards, degradation of RNA and cross-linking of proteins are well recognized. We describe the utilization of a formalin-free fixation and processing system for tissue detection of two important biopredictors in breast cancer – estrogen receptor and HER2 – at the RNA and protein levels.</p> <p>Methods</p> <p>Parallel sections of 62 cases of breast cancer were fixed in an alcohol-based molecular fixative and in formalin. Molecular fixative samples were processed by a novel formalin-free microwave-assisted processing system that preserves DNA, RNA and proteins. Formalin-fixed samples were processed using the conventional method. Estrogen receptor was assessed by immunohistochemistry and real-time PCR. HER2 was assessed by immunohistochemistry, FISH, CISH and real-time PCR.</p> <p>Results</p> <p>The immunohistochemical reaction for estrogen receptor was similar in molecular- and formalin-fixed samples (Spearman Rank R = 0.83, p < 0.05). Also HER2 result was similar to that of formalin-fixed counterparts after elimination of antigen retrieval step (Spearman Rank R = 0.84, p < 0.05). The result of HER2 amplification by FISH and CISH was identical in the molecular fixative and formalin-fixed samples; although a shorter digestion step was required when using the former fixative. Real-time PCR for both estrogen receptor and HER2 were successful in all of the molecular fixative specimens.</p> <p>Conclusion</p> <p>The formalin-free tissue fixation and processing system is a practical platform for evaluation of biomolecular markers in breast cancer and it allows reliable DNA and RNA and protein studies.</p
    corecore