739 research outputs found
Quasi-1D dynamics and nematic phases in the 2D Emery model
We consider the Emery model of a
Cu-O plane of the high temperature superconductors. We show that in a
strong-coupling limit, with strong Coulomb repulsions between electrons on
nearest-neighbor O sites, the electron-dynamics is strictly one dimensional,
and consequently a number of asymptotically exact results can be obtained
concerning the electronic structure. In particular, we show that a nematic
phase, which spontaneously breaks the point- group symmetry of the square
lattice, is stable at low enough temperatures and strong enough coupling.Comment: 8 pages, 5 eps figures; revised manuscript with more detailed
discussions; two new figures and three edited figuresedited figures; 14
references; new appendix with a detailed proof of the one-dimensional
dynamics of the system in the strong coupling limi
Locally critical quantum phase transitions in strongly correlated metals
When a metal undergoes a continuous quantum phase transition, non-Fermi
liquid behaviour arises near the critical point. It is standard to assume that
all low-energy degrees of freedom induced by quantum criticality are spatially
extended, corresponding to long-wavelength fluctuations of the order parameter.
However, this picture has been contradicted by recent experiments on a
prototype system: heavy fermion metals at a zero-temperature magnetic
transition. In particular, neutron scattering from CeCuAu has
revealed anomalous dynamics at atomic length scales, leading to much debate as
to the fate of the local moments in the quantum-critical regime. Here we report
our theoretical finding of a locally critical quantum phase transition in a
model of heavy fermions. The dynamics at the critical point are in agreement
with experiment. We also argue that local criticality is a phenomenon of
general relevance to strongly correlated metals, including doped Mott
insulators.Comment: 20 pages, 3 figures; extended version, to appear in Natur
High-transition-temperature superconductivity in the absence of the magnetic-resonance mode
The fundamental mechanism that gives rise to high-transition-temperature
(high-Tc) superconductivity in the copper oxide materials has been debated
since the discovery of the phenomenon. Recent work has focussed on a sharp
'kink' in the kinetic energy spectra of the electrons as a possible signature
of the force that creates the superconducting state. The kink has been related
to a magnetic resonance and also to phonons. Here we report that infrared
spectra of Bi2Sr2CaCu2O(8+d), (Bi-2212) show that this sharp feature can be
separated from a broad background and, interestingly, weakens with doping
before disappearing completely at a critical doping level of 0.23 holes per
copper atom. Superconductivity is still strong in terms of the transition
temperature (Tc approx 55 K), so our results rule out both the magnetic
resonance peak and phonons as the principal cause of high-Tc superconductivity.
The broad background, on the other hand, is a universal property of the copper
oxygen plane and a good candidate for the 'glue' that binds the electrons.Comment: 4 pages, 3 figure
An angle-resolved photoemission spectral function analysis of the electron doped cuprate Nd_1.85Ce_0.15CuO_4
Using methods made possible by recent advances in photoemission technology,
we perform an indepth line-shape analysis of the angle-resolved photoemission
spectra of the electron doped (n-type) cuprate superconductor
Nd_1.85Ce_0.15CuO_4. Unlike for the p-type materials, we only observe weak mass
renormalizations near 50-70 meV. This may be indicative of smaller
electron-phonon coupling or due to the masking effects of other interactions
that make the electron-phonon coupling harder to detect. This latter scenario
may suggest limitations of the spectral function analysis in extracting
electronic self-energies when some of the interactions are highly momentum
dependent.Comment: 8 pages, 5 figure
Spin-orbit density wave induced hidden topological order in URu2Si2
The conventional order parameters in quantum matters are often characterized
by 'spontaneous' broken symmetries. However, sometimes the broken symmetries
may blend with the invariant symmetries to lead to mysterious emergent phases.
The heavy fermion metal URu2Si2 is one such example, where the order parameter
responsible for a second-order phase transition at Th = 17.5 K has remained a
long-standing mystery. Here we propose via ab-initio calculation and effective
model that a novel spin-orbit density wave in the f-states is responsible for
the hidden-order phase in URu2Si2. The staggered spin-orbit order 'spontaneous'
breaks rotational, and translational symmetries while time-reversal symmetry
remains intact. Thus it is immune to pressure, but can be destroyed by magnetic
field even at T = 0 K, that means at a quantum critical point. We compute
topological index of the order parameter to show that the hidden order is
topologically invariant. Finally, some verifiable predictions are presented.Comment: (v2) Substantially modified from v1, more calculation and comparison
with experiments are include
Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks.
<div><p>Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary for predicting the active metabolic state under specific environmental conditions. The objective function to be used in such optimization algorithms is directly linked with the biological hypothesis underlying the model and therefore it is one of the most relevant parameters for successful modeling. Although linear combination of selected fluxes is widely used for formulating metabolic objective functions, we show that the resulting optimization problem is sensitive towards stoichiometry representation of the metabolic network. This undesirable sensitivity leads to different simulation results when using numerically different but biochemically equivalent stoichiometry representations and thereby makes biological interpretation intrinsically subjective and ambiguous. We hereby propose a new method, Minimization of Metabolites Balance (MiMBl), which decouples the artifacts of stoichiometry representation from the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather than fluxes. By simulating perturbed metabolic networks, we demonstrate that the use of stoichiometry representation independent algorithms is fundamental for unambiguously linking modeling results with biological interpretation. For example, MiMBl allowed us to expand the scope of metabolic modeling in elucidating the mechanistic basis of several genetic interactions in <em>Saccharomyces cerevisiae</em>.</p> </div
Quantum Criticality in Heavy Fermion Metals
Quantum criticality describes the collective fluctuations of matter
undergoing a second-order phase transition at zero temperature. Heavy fermion
metals have in recent years emerged as prototypical systems to study quantum
critical points. There have been considerable efforts, both experimental and
theoretical, which use these magnetic systems to address problems that are
central to the broad understanding of strongly correlated quantum matter. Here,
we summarize some of the basic issues, including i) the extent to which the
quantum criticality in heavy fermion metals goes beyond the standard theory of
order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum
critical regime, iii) the non-Fermi liquid phenomena that accompany quantum
criticality, and iv) the interplay between quantum criticality and
unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to
appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review
article, intended for general readers; the discussion part contains more
specialized topic
Strongly coupled quantum criticality with a Fermi surface in two dimensions: fractionalization of spin and charge collective modes
We describe two dimensional models with a metallic Fermi surface which
display quantum phase transitions controlled by strongly interacting critical
field theories below their upper critical dimension. The primary examples
involve transitions with a topological order parameter associated with
dislocations in collinear spin density wave ("stripe") correlations: the
gapping of the order parameter fluctuations leads to a fractionalization of
spin and charge collective modes, and this transition has been proposed as a
candidate for the cuprates near optimal doping. The coupling between the order
parameter and long-wavelength volume and shape deformations of the Fermi
surface is analyzed by the renormalization group, and a runaway flow to a
non-perturbative regime is found in most cases. A phenomenological scaling
analysis of simple observable properties of possible second order quantum
critical points is presented, with results quite similar to those near quantum
spin glass transitions and to phenomenological forms proposed by Schroeder et
al. (cond-mat/0011002).Comment: 16 pages, 4 figures; (v2) additional clarifying remark
Quantum phase transitions
In recent years, quantum phase transitions have attracted the interest of
both theorists and experimentalists in condensed matter physics. These
transitions, which are accessed at zero temperature by variation of a
non-thermal control parameter, can influence the behavior of electronic systems
over a wide range of the phase diagram. Quantum phase transitions occur as a
result of competing ground state phases. The cuprate superconductors which can
be tuned from a Mott insulating to a d-wave superconducting phase by carrier
doping are a paradigmatic example. This review introduces important concepts of
phase transitions and discusses the interplay of quantum and classical
fluctuations near criticality. The main part of the article is devoted to bulk
quantum phase transitions in condensed matter systems. Several classes of
transitions will be briefly reviewed, pointing out, e.g., conceptual
differences between ordering transitions in metallic and insulating systems. An
interesting separate class of transitions are boundary phase transitions where
only degrees of freedom of a subsystem become critical; this will be
illustrated in a few examples. The article is aimed on bridging the gap between
high-level theoretical presentations and research papers specialized in certain
classes of materials. It will give an overview over a variety of different
quantum transitions, critically discuss open theoretical questions, and
frequently make contact with recent experiments in condensed matter physics.Comment: 50 pages, 7 figs; (v2) final version as publishe
- …