5 research outputs found

    Massive haplotypes underlie ecotypic differentiation in sunflowers

    No full text
    Species often include multiple ecotypes that are adapted to different environments 1. However, it is unclear how ecotypes arise and how their distinctive combinations of adaptive alleles are maintained despite hybridization with non-adapted populations 2-4. Here, by resequencing 1,506 wild sunflowers from 3 species (Helianthus annuus, Helianthus petiolaris and Helianthus argophyllus), we identify 37 large (1-100 Mbp in size), non-recombining haplotype blocks that are associated with numerous ecologically relevant traits, as well as soil and climate characteristics. Limited recombination in these haplotype blocks keeps adaptive alleles together, and these regions differentiate sunflower ecotypes. For example, haplotype blocks control a 77-day difference in flowering between ecotypes of the silverleaf sunflower H. argophyllus (probably through deletion of a homologue of FLOWERING LOCUS T (FT)), and are associated with seed size, flowering time and soil fertility in dune-adapted sunflowers. These haplotypes are highly divergent, frequently associated with structural variants and often appear to represent introgressions from other-possibly now-extinct-congeners. These results highlight a pervasive role of structural variation in ecotypic adaptation. Local adaptation is common in species that experience different environments across their range, often resulting in the formation of ecotypes-ecological races with distinct morphological and/or physiological characteristics that provide an environment-specific fitness advantage. Despite the prevalence of ecotypic differentiation, much remains to be understood about the genetic basis and evolutionary mechanisms that underlie its establishment and maintenance. In particular , a longstanding evolutionary question-dating to criticisms of Darwin's theories by his contemporaries 4-concerns how such ecological divergence can occur when challenged by hybridization with non-adapted populations 2. Local adaptation typically requires alleles at multiple loci that contribute to increased fitness in the same environment ; however, different ecotypes are often geographically close and interfertile, and hybridization between them should break up adaptive allelic combinations 3. To better understand the genetic basis of local adaptation and ecotypic differentiation, we conducted an in-depth study of genetic, phenotypic and environmental variation in three annual sunflower species, each of which includes multiple reproductively compatible ecotypes. Two species (H. annuus and H. petiolaris) have broad, overlapping distributions across North America. Helianthus annuus, the common sunflower, is generally found on mesic soils, but can grow in a variety of disturbed or extreme habitats, including semi-desert or frequently flooded areas. An especially well-characterized ecotype (formally known as H. annuus subsp. texanus) is adapted to the higher temperatures and herbivore pressures in Texas (USA) 5. Helianthus petiolaris, the prairie sunflower, prefers sandier soils; ecotypes of this species are adapted to sand sheets and dunes 6. The third species-H. argophyllus, the silverleaf sunflower-is endemic to southern Texas and includes both an early-flowering, coastal-island ecotype and a late-flowering inland ecotype 7. Population structure of wild sunflowers In a common garden experiment, we grew 10 plants from each of 151 populations of the 3 species, selected from across their native range (Fig. 1a); for each of these populations, we collected corresponding soil samples. We generated extensive records of developmental and morphological traits, and resequenced the genomes of 1,401 individual plants. We resequenced an additional 105 H. annuus plants to fill gaps in geographical coverage, as well as 12 outgroup taxa (Supplementary Table 1). Sunflower genomes are relatively large (H. annuus, 3.5 Gbp; https://doi

    Population genomics of transitions to selfing in brassicaceae model systems

    No full text
    Abstract Many plants harbor complex mechanisms that promote outcrossing and efficient pollen transfer. These include floral adaptations as well as genetic mechanisms, such as molecular self-incompatibility (SI) systems. The maintenance of such systems over long evolutionary timescales suggests that outcrossing is favorable over a broad range of conditions. Conversely, SI has repeatedly been lost, often in association with transitions to self-fertilization (selfing). This transition is favored when the short-term advantages of selfing outweigh the costs, primarily inbreeding depression. The transition to selfing is expected to have major effects on population genetic variation and adaptive potential, as well as on genome evolution. In the Brassicaceae, many studies on the population genetic, gene regulatory, and genomic effects of selfing have centered on the model plant Arabidopsis thaliana and the crucifer genus Capsella. The accumulation of population genomics datasets have allowed detailed investigation of where, when and how the transition to selfing occurred. Future studies will take advantage of the development of population genetics theory on the impact of selfing, especially regarding positive selection. Furthermore, investigation of systems including recent transitions to selfing, mixed mating populations and/or multiple independent replicates of the same transition will facilitate dissecting the effects of mating system variation from processes driven by demography
    corecore