94 research outputs found

    Changes in the free-energy landscape of p38α MAP kinase through its canonical activation and binding events as studied by enhanced molecular dynamics simulations

    Get PDF
    p38α is a Ser/Thr protein kinase involved in a variety of cellular processes and pathological conditions, which makes it a promising pharmacological target. Although the activity of the enzyme is highly regulated, its molecular mechanism of activation remains largely unexplained, even after decades of research. By using state-of-the-art molecular dynamics simulations, we decipher the key elements of the complex molecular mechanism refined by evolution to allow for a fine tuning of p38α kinase activity. Our study describes for the first time the molecular effects of different regulators of the enzymatic activity, and provides an integrative picture of the activation mechanism that explains the seemingly contradictory X-ray and NMR data

    Structural basis of a redox-dependent conformational switch that regulates the stress kinase p38α

    Full text link
    Many functional aspects of the protein kinase p38α have been illustrated by more than three hundred structures determined in the presence of reducing agents. These structures correspond to free forms and complexes with activators, substrates, and inhibitors. Here we report the conformation of an oxidized state with an intramolecular disulfide bond between Cys119 and Cys162 that is conserved in vertebrates. The structure of the oxidized state does not affect the conformation of the catalytic site, but alters the docking groove by partially unwinding and displacing the short αD helix due to the movement of Cys119 towards Cys162. The transition between oxidized and reduced conformations provides a mechanism for fine-tuning p38α activity as a function of redox conditions, beyond its activation loop phosphorylation. Moreover, the conformational equilibrium between these redox forms reveals an unexplored cleft for p38α inhibitor design that we describe in detail.© 2023. The Author(s)

    The atypical CDK activator RingoA/Spy1 regulates exit from quiescence in neural stem cells

    Full text link
    In the adult mammalian brain, most neural stem cells (NSCs) are held in a reversible state of quiescence, which is essential to avoid NSC exhaustion and determine the appropriate neurogenesis rate. NSCs of the mouse adult subependymal niche provide neurons for olfactory circuits and can be found at different depths of quiescence, but very little is known on how their quiescence-to-activation transition is controlled. Here, we identify the atypical cyclin-dependent kinase (CDK) activator RingoA as a regulator of this process. We show that the expression of RingoA increases the levels of CDK activity and facilitates cell cycle entry of a subset of NSCs that divide slowly. Accordingly, RingoA-deficient mice exhibit reduced olfactory neurogenesis with an accumulation of quiescent NSCs. Our results indicate that RingoA plays an important role in setting the threshold of CDK activity required for adult NSCs to exit quiescence and may represent a dormancy regulator in adult mammalian tissues.© 2023 The Author(s)

    Correlation between p38 mitogen-activated protein kinase and human telomerase reverse transcriptase in sarcomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the major components of telomerase is the human telomerase reverse transcriptase (hTERT) as the catalytic protein. hTERT mRNA expression are reported to be associated with prognosis and tumor progression in several sarcomas. However, there is no clear understanding of the mechanisms of hTERT in human sarcomas. Recent studies have suggested that signals transmitted through p38 mitogen-activated protein kinase (MAPK) can increase or decrease hTERT transcription in human cells. The purpose of this study was to analyse the correlation between p38 MAPK and hTERT in sarcoma samples.</p> <p>Methods</p> <p>We investigated 36 soft tissue malignant fibrous histiocytomas (MFH), 24 liposarcomas (LS) and 9 bone MFH samples for hTERT and p38 MAPK expression. Quantitative detection of hTERT and p38 MAPK was performed by RT-PCR.</p> <p>Results</p> <p>There was a significant positive correlation between the values of hTERT and p38 MAPK in all samples (r = 0.445, p = 0.0001), soft tissue MFH (r = 0.352, p = 0.0352), LS (r = 0.704, p = 0.0001) and bone MFH samples (r = 0.802, p = 0.0093). Patients who had a higher than average expression of p38 MAPK had a significantly worse prognosis than other patients (p = 0.0036).</p> <p>Conclusions</p> <p>p38 MAPK may play a role in up-regulation of hTERT, and therefore, p38 MAPK may be a useful marker in the assessment of hTERT and patients' prognosis in sarcomas.</p

    Immunization of mice with the nef gene from Human Immunodeficiency Virus type 1: Study of immunological memory and long-term toxicology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human immunodeficiency virus type 1 (HIV-1) regulatory protein, Nef, is an attractive vaccine target because it is involved in viral pathogenesis, is expressed early in the viral life cycle and harbors many T and B cell epitopes. Several clinical trials include gene-based vaccines encoding this protein. However, Nef has been shown to transform certain cell types <it>in vitro</it>. Based on these findings we performed a long-term toxicity and immunogenicity study of Nef, encoded either by Modified Vaccinia virus Ankara or by plasmid DNA. BALB/c mice were primed twice with either DNA or MVA encoding Nef and received a homologous or heterologous boost ten months later. In the meantime, the Nef-specific immune responses were monitored and at the time of sacrifice an extensive toxicological evaluation was performed, where presence of tumors and other pathological changes were assessed.</p> <p>Results</p> <p>The toxicological evaluation showed that immunization with MVAnef is safe and does not cause cellular transformation or other toxicity in somatic organs.</p> <p>Both DNAnef and MVAnef immunized animals developed potent Nef-specific cellular responses that declined to undetectable levels over time, and could readily be boosted after almost one year. This is of particular interest since it shows that plasmid DNA vaccine can also be used as a potent late booster of primed immune responses. We observed qualitative differences between the T cell responses induced by the two different vectors: DNA-encoded nef induced long-lasting CD8<sup>+ </sup>T cell memory responses, whereas MVA-encoded nef induced CD4<sup>+ </sup>T cell memory responses. In terms of the humoral immune responses, we show that two injections of MVAnef induce significant anti-Nef titers, while repeated injections of DNAnef do not. A single boost with MVAnef could enhance the antibody response following DNAnef prime to the same level as that observed in animals immunized repeatedly with MVAnef. We also demonstrate the possibility to boost HIV-1 Nef-specific immune responses using the MVAnef construct despite the presence of potent anti-vector immunity.</p> <p>Conclusion</p> <p>This study shows that the nef gene vectored by MVA does not induce malignancies or other adverse effects in mice. Further, we show that when the nef gene is delivered by plasmid or by a viral vector, it elicits potent and long-lasting immune responses and that these responses can be directed towards a CD4<sup>+ </sup>or a CD8<sup>+ </sup>T cell response depending on the choice of vector.</p

    Cytostatic Factor Proteins Are Present in Male Meiotic Cells and β-Nerve Growth Factor Increases Mos Levels in Rat Late Spermatocytes

    Get PDF
    Background: In co-cultures of pachytene spermatocytes with Sertoli cells, beta-NGF regulates the second meiotic division by blocking secondary spermatocytes in metaphase (metaphase II), and thereby lowers round spermatid formation. In vertebrates, mature oocytes are arrested at metaphase II until fertilization, because of the presence of cytostatic factor (CSF) in their cytoplasm. By analogy, we hypothesized the presence of CSF in male germ cells. Methodology/Principal Findings: We show here, that Mos, Emi2, cyclin E and Cdk2, the four proteins of CSF, and their respective mRNAs, are present in male rat meiotic cells; this was assessed by using Western blotting, immunocytochemistry and reverse transcriptase PCR. We measured the relative cellular levels of Mos, Emi2, Cyclin E and Cdk2 in the meiotic cells by flow cytometry and found that the four proteins increased throughout the first meiotic prophase, reaching their highest levels in middle to late pachytene spermatocytes, then decreased following the meiotic divisions. In co-cultures of pachytene spermatocytes with Sertoli cells, beta-NGF increased the number of metaphases II, while enhancing Mos and Emi2 levels in middle to late pachytene spermatocytes, pachytene spermatocytes in division and secondary spermatocytes. Conclusion/Significance: Our results suggest that CSF is not restricted to the oocyte. In addition, they reinforce the view that NGF, by enhancing Mos in late spermatocytes, is one of the intra-testicular factors which adjusts the number of round spermatids that can be supported by Sertoli cells

    A Dynamical Model of Oocyte Maturation Unveils Precisely Orchestrated Meiotic Decisions

    Get PDF
    Maturation of vertebrate oocytes into haploid gametes relies on two consecutive meioses without intervening DNA replication. The temporal sequence of cellular transitions driving eggs from G2 arrest to meiosis I (MI) and then to meiosis II (MII) is controlled by the interplay between cyclin-dependent and mitogen-activated protein kinases. In this paper, we propose a dynamical model of the molecular network that orchestrates maturation of Xenopus laevis oocytes. Our model reproduces the core features of maturation progression, including the characteristic non-monotonous time course of cyclin-Cdks, and unveils the network design principles underlying a precise sequence of meiotic decisions, as captured by bifurcation and sensitivity analyses. Firstly, a coherent and sharp meiotic resumption is triggered by the concerted action of positive feedback loops post-translationally activating cyclin-Cdks. Secondly, meiotic transition is driven by the dynamic antagonism between positive and negative feedback loops controlling cyclin turnover. Our findings reveal a highly modular network in which the coordination of distinct regulatory schemes ensures both reliable and flexible cell-cycle decisions

    The p38/MK2/Hsp25 Pathway Is Required for BMP-2-Induced Cell Migration

    Get PDF
    Background: Bone morphogenetic proteins (BMPs) have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. Methodology/Principal Findings: Activation of p38 MAPK has been shown to be relevant for a number of BMP-2¿s physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38¿ or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. Conclusions: These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration

    Endoplasmic Reticulum Remodeling Tunes IP3-Dependent Ca2+ Release Sensitivity

    Get PDF
    The activation of vertebrate development at fertilization relies on IP3-dependent Ca2+ release, a pathway that is sensitized during oocyte maturation. This sensitization has been shown to correlate with the remodeling of the endoplasmic reticulum into large ER patches, however the mechanisms involved are not clear. Here we show that IP3 receptors within ER patches have a higher sensitivity to IP3 than those in the neighboring reticular ER. The lateral diffusion rate of IP3 receptors in both ER domains is similar, and ER patches dynamically fuse with reticular ER, arguing that IP3 receptors exchange freely between the two ER compartments. These results suggest that increasing the density of IP3 receptors through ER remodeling is sufficient to sensitize IP3-dependent Ca2+ release. Mathematical modeling supports this concept of ‘geometric sensitization’ of IP3 receptors as a population, and argues that it depends on enhanced Ca2+-dependent cooperativity at sub-threshold IP3 concentrations. This represents a novel mechanism of tuning the sensitivity of IP3 receptors through ER remodeling during meiosis
    • …
    corecore