80 research outputs found

    A highly efficient green synthesis of 1, 8-dioxo-octahydroxanthenes

    Get PDF
    SmCl3 (20 mol%) has been used as an efficient catalyst for reaction between aromatic aldehydes and 5,5-dimethyl-1,3-cyclohexanedione at 120°C to give 1,8-dioxo-octahydroxanthene derivatives in high yield. The same reaction in water, at room temperature gave only the open chain analogue of 1,8-dioxo-octahydroxanthene. Use of eco-friendly green Lewis acid, readily available catalyst and easy isolation of the product makes this a convenient method for the synthesis of either of the products

    Clinical and Organizational Factors Related to the Reduction of Mechanical Restraint Application in an Acute Ward: An 8-Year Retrospective Analysis

    Get PDF
    Background: The purpose of this study was to describe the frequency of mechanical restraint use in an acute psychiatric ward and to analyze which variables may have significantly influenced the use of this procedure. Methods: This retrospective study was conducted in the Servizio Psichiatrico di Diagnosi e Cura (SPDC) of Modena Centro. The following variables of our sample, represented by all restrained patients admitted from 1-1-2005 to 31-12-2012, were analyzed: age, gender, nationality, psychiatric diagnoses, organic comorbidity, state and duration of admission, motivation and duration of restraints, nursing shift and hospitalization day of restraint, number of patients admitted at the time of restraint and institutional changes during the observation period. The above variables were statistically compared with those of all other non-restrained patients admitted to our ward in the same period. Results: Mechanical restraints were primarily used as a safety procedure to manage aggressive behavior of male patients, during the first days of hospitalization and night shifts. Neurocognitive disorders, organic comorbidity, compulsory state and long duration of admission were statistically significantly related to the increase of restraint use (p<.001, multivariate logistic regression). Institutional changes, especially more restricted guidelines concerning restraint application, were statistically significantly related to restraint use reduction (p<.001, chi2 test, multivariate logistic regression). Conclusion: The data obtained highlight that mechanical restraint use was influenced not only by clinical factors, but mainly by staff and policy factors, which have permitted a gradual but significant reduction in the use of this procedure through a multidimensional approach

    1α,25(OH)2-3-Epi-Vitamin D3, a Natural Physiological Metabolite of Vitamin D3: Its Synthesis, Biological Activity and Crystal Structure with Its Receptor

    Get PDF
    Background: The 1 alpha,25-dihydroxy-3-epi-vitamin-D(3) (1 alpha,25(OH)(2)-3-epi-D(3)), a natural metabolite of the seco-steroid vitamin D(3), exerts its biological activity through binding to its cognate vitamin D nuclear receptor (VDR), a ligand dependent transcription regulator. In vivo action of 1 alpha,25(OH)(2)-3-epi-D(3) is tissue-specific and exhibits lowest calcemic effect compared to that induced by 1 alpha,25(OH)(2)D(3). To further unveil the structural mechanism and structure-activity relationships of 1 alpha,25(OH)(2)-3-epi-D3 and its receptor complex, we characterized some of its in vitro biological properties and solved its crystal structure complexed with human VDR ligand-binding domain (LBD). Methodology/Principal Findings: In the present study, we report the more effective synthesis with fewer steps that provides higher yield of the 3-epimer of the 1 alpha,25(OH)(2)D(3). We solved the crystal structure of its complex with the human VDR-LBD and found that this natural metabolite displays specific adaptation of the ligand-binding pocket, as the 3-epimer maintains the number of hydrogen bonds by an alternative water-mediated interaction to compensate the abolished interaction with Ser278. In addition, the biological activity of the 1 alpha,25(OH)(2)-3-epi-D(3) in primary human keratinocytes and biochemical properties are comparable to 1 alpha,25(OH)(2)D(3). Conclusions/Significance: The physiological role of this pathway as the specific biological action of the 3-epimer remains unclear. However, its high metabolic stability together with its significant biologic activity makes this natural metabolite an interesting ligand for clinical applications. Our new findings contribute to a better understanding at molecular level how natural metabolites of 1 alpha,25(OH)(2)D(3) lead to significant activity in biological systems and we conclude that the C3-epimerization pathway produces an active metabolite with similar biochemical and biological properties to those of the 1 alpha,25(OH)(2)D(3)

    Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins

    Get PDF
    Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology

    Attachment styles modulate neural markers of threat and imagery when engaging in self-criticism

    Get PDF
    Attachment styles hold important downstream consequences for mental health through their contribution to the emergence of self-criticism. To date, no work has extended our understanding of the influence of attachment styles on self-criticism at a neurobiological level. Herein we investigate the relationship between self-reported attachment styles and neural markers of self-criticism using fMRI. A correlation network analysis revealed lingual gyrus activation during self-criticism, a marker of visual mental imagery, correlated with amygdala activity (threat response). It also identified that secure attachment positively correlated with lingual gyrus activation, whilst avoidant attachment was negatively correlated with lingual gyrus activation. Further, at greater levels of amygdala response, more securely attached individuals showed greater lingual gyrus activation, and more avoidantly attached individuals showed less lingual gyrus activation. Our data provide the first evidence that attachment mechanisms may modulate threat responses and mental imagery when engaging in self-criticism, which have important clinical and broader social implications.Australian Postgraduate Scholarship

    Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life

    Full text link

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    The Structural Layers of the Porcine Iris Exhibit Inherently Different Biomechanical Properties

    No full text
    10.1167/iovs.64.13.11Investigative Ophthalmology and Visual Science641311
    corecore